

UTILITIES INFRASTRUCTURE DESIGN - AIMS ISSUED FOR CONSTRUCTION CALCULATIONS

McMurdo Station, Antarctica

Submitted to: United States Antarctic Program Leidos Innovations - Antarctic Support Contract

Submitted by:

Merrick & Company 5970 Greenwood Plaza Blvd. Greenwood Village, CO 80111 Tel: 303-751-0741 • Fax: 303-751-2581 www.merrick.com

July 2017

Project:	МсМи	McMurdo Utilities						
Subject:	AIMS	IMS						
Project No.:	64017481-77			Calculat	Calculation No.: CALC-7481-77		-77-S-00'	1
Status:	Status:			Rev	Ву	Date	Chk'd	Date
				Final	PIF	7/20/17	JW	7/20/17
Confirmation		Yes	No		Prelimin	ary	Final	Void
Required:			Х				Х	


Technical Calculations

Structural Discipline

Calculation Title: McMurdo Utilities Final Structural Calculations

Prepared For: Antarctic Support Contract

Prepared By: Merrick & Company 5970 Greenwood Plaza Blvd. Greenwood Village, CO 80111

Subject:	McMurdo Utilit	McMurdo Utilities					
Project No.:	64017481-77	Calculation No.:	CALC-7481-77-S-001	Rev:	Final		

REVISION CONTROL

	Revision Signatures							
Prepared by P Finley, PE, SE			<u>_7/20/</u> Dat		Review J Weav	ed by		7/24/17 Date
Reviewed/C	Checke	d by	Da	te	Approv	əd by		Date
		Inte	erdise	ciplinar	y Coordina	ation	Review (ICR)	
ICR Complete?		Yes X	N/R	Affect	ed Disciplin	es:	Structural	
				F	Revision H	istory	,	
Status	Rev	Date	Prep By	ared	Affected Pages	Des	cription of Changes	

Subject:	McMurdo Utilit	McMurdo Utilities					
Project No.:	64017481-77	Calculation No.:	CALC-7481-77-S-001	Rev:	Final		

TABLE OF CONTENTS

	SHEET	
REVIS	ION CONTROL	2
TABLE	OF CONTENTS	3
1.0	INTRODUCTION	4
2.0	DESIGN INPUT	4
3.0	MATERIALS OF CONSTRUCTION	5
	METHODOLOGY	
	REFERENCES	
	CONCLUSIONS	
7.0	CALCULATIONS	6

Subject:	McMurdo Utilit	McMurdo Utilities					
Project No.:	64017481-77	Calculation No.:	CALC-7481-77-S-001	Rev:	Final		

1.0 INTRODUCTION

Analysis of Steel structures shall be performed in accordance with the provisions of the International Building Code IBC 2015 as well as all applicable codes associated with IBC 2015.

2.0 DESIGN INPUT

Load Combinations

Allowable Stress Design for Foundations and Deflections

Earthquake Loads (E)

Short Period Spectral Accelerations (S _S)	0.454 g
1 Second Spectral Accelerations (S ₁)	0.128 g
Site Classification	В
Seismic Design Category	C
Importance Factor- Contingency Ops	

Foundations and Soils

Criteria as per Geotechnical Investigation Report by (Geotechnical Assessment Report – McMurdo Station, Ross Island, Antarctica, Dated May 2016).

	Allowable	Allowable including Increase for Wind or	Seismic
Soil Bearing	2,100 psf	2,800 psf	
Active Pressure	30 pcf		
Passive Pressure	200 pcf	267 pcf	

Subject:	McMurdo Utilit	McMurdo Utilities					
Project No.:	64017481-77	Calculation No.:	CALC-7481-77-S-001	Rev:	Final		

3.0 MATERIALS OF CONSTRUCTION

Wood

Douglas Fir Larch No 1:	Fb = 1000 psi
Concrete	
Precast Foundations	f'c = 5000 psi
Reinforcing Steel	
Unless noted otherwise	ASTM - A615, Grade 60
Welded Rebar, Threaded Rebar	ASTM - A706, Grade 60
Smooth Welded Wire Fabric	ASTM - A185
Deformed Welded Wire Fabric	ASTM - A497
Deformed Bar Anchors	ASTM - A496
Structural Steel	
Wide Flange Beams	ASTM - A992, Grade 50
Wide Flange Columns	ASTM - A992, Grade 50
Tubes	ASTM - A500 - Grade B
Angles and Channels	ASTM - A36
Plates	ASTM - A36, or ASTM - A572, Grade 50
Base Plates	ASTM - A36
Connection Mat'l, Embedded Plates	ASTM - A36
Bolts	ASTM - A325
Anchor Bolts	ASTM - A1554 Gr 36
Welding Electrodes	ASTM - E70xx (U.N.O.)
Headed Shear Studs	ASTM - A108

4.0 METHODOLOGY

The utility structures will be designed to resist lateral loading from wind and seismic along with snow, dead, and live loads in the both directions. Beam elements will be provided at the foundation level to help stiffen the structure to control deflection and to help spread out the frame reactions to the precast concrete foundation.

Based upon site conditions, the foundations will be constructed of precast concrete foundations sized for both compression bearing and tension uplift forces. These foundations will bear on compacted grade and bear a min of 18 inches below grade.

Utility support bents will be provided where necessary to support above ground piping and cable trays.

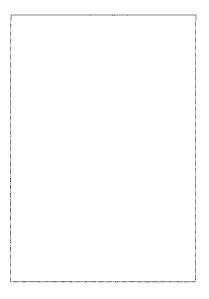
Subject:	McMurdo Utilit	McMurdo Utilities						
Project No.:	64017481-77	Calculation No.:	CALC-7481-77-S-001	Rev:	Final			

Foundation for the water tank will use timber members with insulation and will incorporate thermosiphons located in the fill material below the tank.

For head walls at culverts, solider pile walls are being utilized to retain the soil.

5.0 REFERENCES

International Building Code, International Code Council, 2015. American Society of Civil Engineers, ASCE 7-10 Minimum Design Loads for Buildings and Other Structures, 2010. American Institute of Steel Construction, AISC 14th Edition. National Design Specification (NDS) for Wood Construction with 2012 Supplement


6.0 CONCLUSIONS

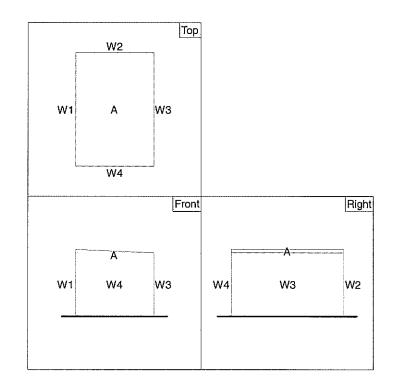
Based on the design inputs and stated assumptions, steel structures are being proposed for the required structures necessary for this utility project. See following calculations for supporting data and assumptions for each structure.

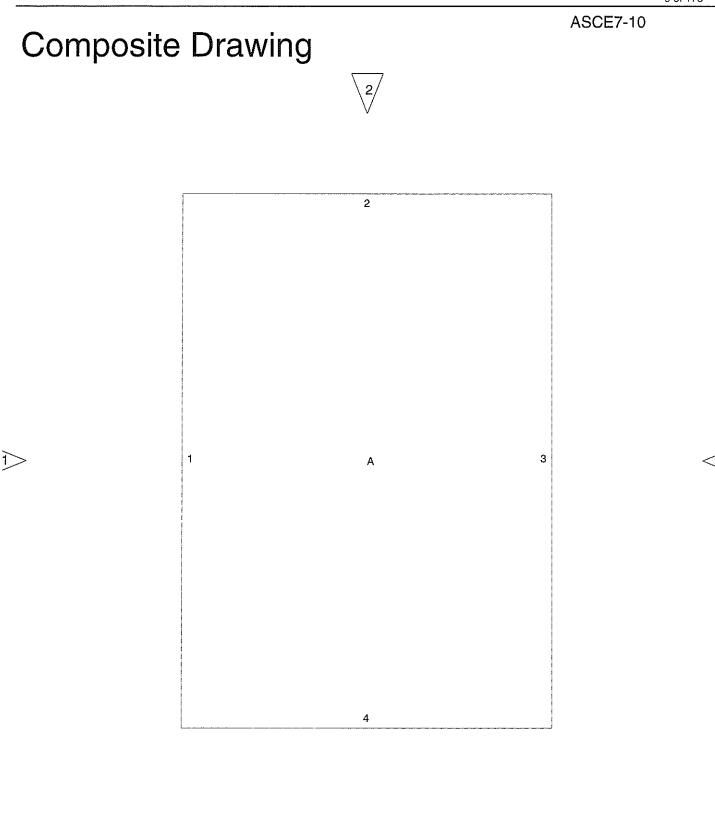
7.0 CALCULATIONS

	Pages
Pump House Building Node Building Utility Support Tank Foundation Culvert Head Wall	7-112 113-130 131-159 160-174 175-178

Project Name: McMundo Rup House

Location: By: Start Date: 12/2/2016 Comments:


..\DESIGN - DATA\Calcs\Structural\Pump House.wls


Section - Main Section

Enclosure Classification: Enclosed

Wall Length(ft) Overhang(ft)

1	26.0	0.0					
2	0.0						
3							
4	4 18.0						
Eave H	leight:	14.6 6 t					
Parape	et Height:	0 ft					
Parape	et Enclosur	e: Solid					
Roof S	hape: Mo	onoslope					
Roof	2)						
A	0.5						
	•						

3

MWFRS Net Pressures

This data was calculated using the building of all heights method.

Wind Direction 1

#	Surface	z (ft)	q (psf)	G	Ср	GCpi	Ext Pres (psf)	Net w/ +GCpi	(psf) Net w/ -GCpi	(psf)
1	Windward Wall	14.7	72.6	0.90	0.80	0.18	52.3	39.2	65.3	
		15.4	73.0		0.80		52.6	39.5	65.6	
2	Side Wall	14.7	72.6	0.90	-0.70	0.18	-45.7	-58.8	-32.7	
3	Leeward Wall	14.7	72.6	0.90	-0.50	0.18	-32.7	-45.7	-19.6	
4	Side Wall	14.7	72.6	0.90	-0.70	0.18	-45.7	-58.8	-32.7	
A	Roof	0 to 7.3 *	72.6	0.90	-1.08	0.18	-70.6	-83.6	-57.5	-
		7.3 to 14.7 *	72.6		-0.77		-50.3	-63.4	-37.2	
		14.7 to 18.0 *	72.6		-0.63		-41.2	-54.2	-28.1	
		0 to 18.0 *	72.6		-0.18		-11.8	-24.8	1.3	
	is load case 1 in stance from windv	-	re 27.4-8	3. See	Figure	ə 27.4-	8 for other cas	es.		

MWFRS Net Pressures

This data was calculated using the building of all heights method.

Wind Direction 2

#	Surface	z (ft)	q (psf)	G	Ср	GCpi	Ext Pres (psf)	Net w/ +GCpi	(psf) Net w/ -GCpi (psf)
1	Side Wall	14.7	72.6	0.91	-0.70	0.18	-46.2	-59.3	-33.2
2	Windward Wall	14.7	72.6		0.80		52.9	39.8	65.9
		15.4	73.0		0.80		53.1	40.1	66.2
з	Side Wall	14.7	72.6	0.91	-0.70	0.18	-46.2	-59.3	-33.2
4	Leeward Wall	14.7	72.6	0.91	-0.41	0.18	-27.1	-40.2	-14.0
А	Roof	0 to 7.3 *	72.6	0.91	-0.95	0.18	-62.8	-75.8	-49.7
		7.3 to 14.7 *	72.6		-0.87		-57.5	-70.5	-44.4
		14.7 to 26.0 *	72.6		-0.53		-35.0	-48.1	-21.9
		0 to 26.0 *	72.6		-0.18		-11.9	-25.0	1.2
	is load case 1 in	-	re 27.4-8	3. See	Figure	27.4-	8 for other case	es.	
_* Dis	stance from windv	vard edge.							

MWFRS Net Pressures

This data was calculated using the building of all heights method.

Wind Direction 3

#	Surface	z (ft)	q (psf)	G	Ср	GCpi	Ext Pres (psf)	Net w/ +GCpi	(psf) Net w/ -GCpi	(psf)
1	Leeward Wall	14.7	72.6	0.90	-0.50	0.18	-32.7	-45.7	-19.6	
2	Side Wall	14.7	72.6		-0.70		-45.7	-58.8	-32.7	
3	Windward Wall	14.7	72.6	0.90	0.80	0.18	52.3	39.2	65.3	
4	Side Wall	14.7	72.6	0.90	-0.70	0.18	-45.7	-58.8	-32.7	
A	Roof	0 to 7.3 *	72.6	0.90	-1.08	0.18	-70.6	-83.6	-57.5	
		7.3 to 14.7 *	72.6		-0.77		-50.3	-63.4	-37.2	
		14.7 to 18.0 *	72.6		-0.63		-41.2	-54.2	-28.1	
		0 to 18.0 *	72.6		-0.18		-11.8	-24.8	1.3	
This	is load case 1 in	ASCE 7-10 Figu	ire 27.4-8	3. See	Figure	e 27.4-	8 for other cas	es.		
* Dis	tance from windw	vard edge.								

MWFRS Net Pressures

This data was calculated using the building of all heights method.

#	Surface	z (ft)	q (psf)	G	Ср	GCpi	Ext Pres (p	osf) Net w/ +GCpi	(psf) Net w/ -GCpi (p
1	Side Wall	14.7	72.6	0.91	-0.70	0.18	-46.2	-59.3	-33.2
2	Leeward Wall	14.7	72.6		-0.41		-27.1	-40.2	-14.0
3	Side Wall	14.7	72.6	0.91	-0.70	0.18	-46.2	-59.3	-33.2
4	Windward Wall	14.7	72.6	0.91	0.80	0.18	52.9	39.8	65.9
		15.4	73.0		0.80		53.1	40.1	66.2
A	Roof	0 to 7.3 *	72.6	0.91	-0.95	0.18	-62.8	-75.8	-49.7
		7.3 to 14.7 *	72.6		-0.87		-57.5	-70.5	-44.4
		14.7 to 26.0 *	72.6		-0.53		-35.0	-48.1	-21.9
		0 to 26.0 *	72.6		-0.18		-11.9	-25.0	1.2

Component and Cladding Loads

Job Name:	McMurdo	
Des:	C & C	

Gcpi	0.18	
qh	72.6 psf	
qz	72.6 psf	

	Wall GCp Values								
Area ft^2	Zone 4 & 5 Pos	Zone 4 Neg	Zone 5 Neg						
= 20	1	-1.1	-1.4						
= 50	0.95	-1.05	-1.3						
= 100	0.9	-0.99	-1.15						
= 200	0.81	-0.91	-1.05						
= 500	0.79	-0.89	-0.93						
> 500	0.7	-0.8	-0.8						

		~	~						
	Wall Pressures Strength Level								
Area ft^2	Zone 4 & 5 Pos	Zone 4 Neg	Zone 5 Neg						
= 20	85.7 psf	-93.0 psf	-114.7 psf						
= 50	82.1 psf	-89.3 psf	-107.5 psf						
= 100	78.4 psf	-85.0 psf	-96.6 psf						
= 200	71.9 psf	-79.2 psf	-89.3 psf						
= 500	70.4 psf	-77.7 psf	-80.6 psf						
> 500	63.9 psf	-71.2 psf	-71.2 psf						

	Wall Pressures Allowable					_d V ^{^2} I
Area ft^2	Zone 4 & 5 Pos	Zone 4 Neg	Zone 5 Neg			
= 20	51.4 psf	-55.8 psf	-68.8 psf	Kz	1.03	pg 317 Based on Height h or z
= 50	49.2 psf	-53.6 psf	-64.5 psf	K _{zt}	1	
= 100	47.1 psf	-51.0 psf	-57.9 psf	K _d	0.85	pg 250
= 200	43.1 psf	-47.5 psf	-53.6 psf	V	180	
= 500	42.3 psf	-46.6 psf	-48.4 psf	1	1	5 61
> 500	38.3 psf	-42.7 psf	-42.7 psf	qz	72.62	psf of Strength

$$a = \begin{cases} .4(12) = 4.8' \\ .1(18.0) = 1.8' \\ .4(18.00) = 7.2' \end{cases} = 7.2''$$

Date:	10/31/16	Sheet	of	
Project N	lo.:	7481-77		
By:		PIF		

.

Date:	2/26/17	Sheet	of
Project N	No.:	7481-77	-
By:		PIF	

Job Name:	McMurdo Utilities	
Des:	C & C	

Gcpi	0.18	
qh	72.6 psf	

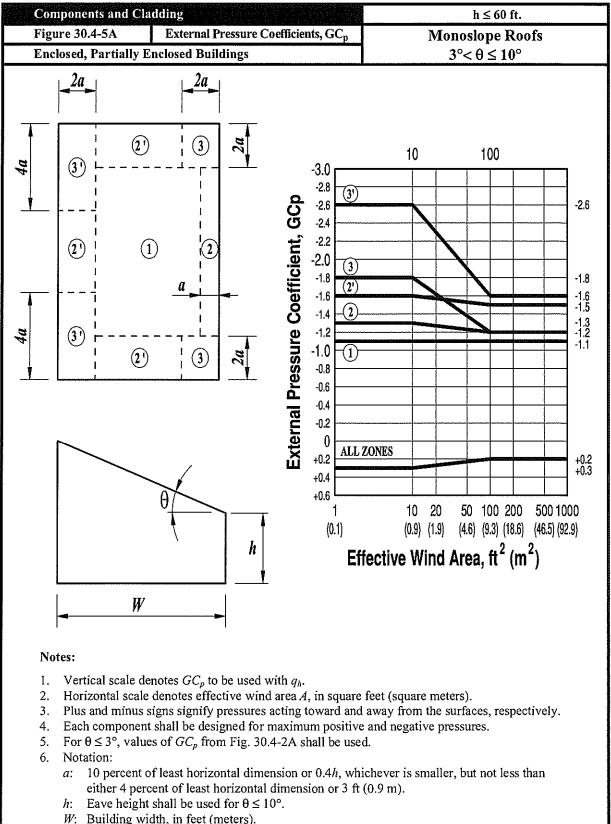
	Roof GCp Values					Over Hang	
Area ft^2	Zone 1, 2 & 3 Pos	Zone 1 Neg	Zone 2	Zone 3 Neg	Zone 2	Zone 3	
= 10	0.3	-1.1	-1.3	-1.8	0	0	
= 20	0.25	-1.1	-1.25	-1.62	0	0	
= 50	0.22	-1.1	-1.22	-1.38	0	0	
= 100	0.2	-1.1	-1.2	-1.2	0	0	

	Roof Pressures Strength Level					Over Hang	
Area ft^2	Zone 1, 2 & 3 Pos	Zone 1 Neg	Zone 2	Zone 3 Neg	Zone 2	Zone 3	
= 10	34.9 psf	-93.0 psf	-107.5 psf	-143.8 psf	0.0 psf	0.0 psf	
= 20	31.2 psf	-93.0 psf	-103.8 psf	-130.7 psf	0.0 psf	0.0 psf	
= 50	29.0 psf	-93.0 psf	-101.7 psf	-113.3 psf	0.0 psf	0.0 psf	
= 100	27.6 psf	-93.0 psf	-100.2 psf	-100.2 psf	0.0 psf	0.0 psf	

	Roof Pressures Allowable					Over Hang	
Area ft^2	Zone 1, 2 & 3 Pos	Zone 1 Neg	Zone 2	Zone 3 Neg	Zone 2	Zone 3	
= 10	20.9 psf	-55.8 psf	-64.5 psf	-86.3 psf	0.0 psf	0.0 psf	
= 20	18.7 psf	-55.8 psf	-62.3 psf	-78.4 psf	0.0 psf	0.0 psf	
= 50	17.4 psf	-55.8 psf	-61.0 psf	-68.0 psf	0.0 psf	0.0 psf	
= 100	16.6 psf	-55.8 psf	-60.1 psf	-60.1 psf	0.0 psf	0.0 psf	

Date:	2/26/17	Sheet	of	
Project N	No.:	7481-77	-	
By:		PIF		

Job Name:	McMurdo Utilities	
Des:	C&C	


Gcpi	0.18	
qh	72.6 psf	

	Roof GCp Values			Over Hang		
Area ft^2	Zone 1, 2 & 3 Pos	Zone 1 Neg	Zone 2*	Zone 3 Neg	Zone 2	Zone 3
= 10	0.3	-1.1	-1.6	-2.6	0	0
= 20	0.25	-1.1	-1.58	-2.3	0	0
= 50	0.22	-1.1	-1.55	-1.9	0	0
= 100	0.2	-1.1	-1.5	-1.6	0	0

	Roof Pressures Strength Level					Over Hang	
Area ft^2	Zone 1, 2 & 3 Pos	Zone 1 Neg	Zone 2	Zone 3 Neg	Zone 2	Zone 3	
= 10	34.9 psf	-93.0 psf	-129.3 psf	-201.9 psf	0.0 psf	0.0 psf	
= 20	31.2 psf	-93.0 psf	-127.8 psf	-180.1 psf	0.0 psf	0.0 psf	
= 50	29.0 psf	-93.0 psf	-125.6 psf	-151.0 psf	0.0 psf	0.0 psf	
= 100	27.6 psf	-93.0 psf	-122.0 psf	-129.3 psf	0.0 psf	0.0 psf	

	Roof Pressures Allowable,					Over Hang	
Area ft^2	Zone 1, 2 & 3 Pos	Zone 1 Neg	Zone 2	Zone 3 Neg	Zone 2	Zone 3	
= 10	20.9 psf	-55.8 psf	-77.6 psf	-121.1 psf	0.0 psf	0.0 psf	
= 20	18.7 psf	-55.8 psf	-76.7 psf	-108.1 psf	0.0 psf	0.0 psf	
= 50	17.4 psf	-55.8 psf	-75.4 psf	-90.6 psf	0.0 psf	0.0 psf	
= 100	16.6 psf	-55.8 psf	-73.2 psf	-77.6 psf	0.0 psf	0.0 psf	

a= 7.2'

W: Building width, in feet (meters).

Engineering Calculation Sheet

Date 11/19 Sheets of 178 of Contract 7481-77

011-2010A

Calculation No.

Subject	McMirdo	ildition	Revision	Ву	Date	Chk'd	Date
				PF-			
1							
2	Sup House	line da			· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	a warden de la companya de la company			· ·	• • • • • • • • • • • • • • • • • • • •		1
T	Post of	ng ang kanang					
5						·····	
	Beams & G	Tanadana (manadana yanadan Na Nasa (ma		1			
í			7 73.			·····	
·	Fusulatio	×~ =	10 00	÷ 7			
3	Nech	الرحمان الدين المراجع المالية المراجع ا محمد المراجع ال	10 7	-4			
}	nece		····				
0	mis		3 P	and t		: : · · · · · · · · · · · · · · · · · ·	;
1				an serie a constr		1	i i i i i i i i i i i i i i i i i i i
2			30 7				· · · · · · · · · · · · · · · · · · ·
3				:			
4	Floor th	~					
s					· · ·		
6	BMG& GIL	2400 =	: 10 -1	2-1		····· · · · · · · · · · · · · · · · ·	··· ··· · · · · · · · · · · · · · · ·
7						• · · · · · · · · • · · · ·	••••••••••••••••••••••••••••••••••••••
8	Floor		10 7			an an an Anna an Anna an Anna an Anna an Anna an Anna An Anna Anna	de el el conservação de serva de serva Esta de serva de serv
9	Insolabie	~ -	10 7	rest	• • • •	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·
- 	(1)		- 10 1				
	Mech				··· •		••••••••••••••••••••••••••••••••••••••
1				: 		· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	1	40	post	· · · · · · · · · · · · · · · · · · ·	1. 1	:
3				•••••••••		·····	
4			: :				
5	Wall Loca	£	- 15	Part			
6	·····			N.			
7		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
8	· · · ·	i 	· · · · · · · · · · · · · · · · · · ·				
9							: : . :
0		······································					
1						·····	••••••
2					···· ··· ·· ·· ··· ·· ·· ·· ·		
3	· · · · · · · · · · · · · · · · · · ·					- · · · · · · · · · · · · · · · · · · ·	: .
	345678	9 10 11 12 13 1	4 15 16 17 1	8 19 20	21 22 23	24 25 26	27 28 29

Engineering Calculation Sheet

Date 11/17 Sheet of 178 of Contract 7481-77

011-2010A

Calculation No.

Subject	Me Mer do	Wilet	125		Revision	2	By	Date		Ch k' d		Date
						(**						
	************											<u>.</u>
1				L	·		I		l		I	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·) · · · ·	: 	:			· · · · · · · · · · · · · · · · · · ·				
	end win	020 602	×-d	·····	•	• < • • • • • • • • • •				••••	· · ·	
	$P_q = e$)	·····		t some	s al			
······································	tg - (e	- <u>C</u>		5800	in co	648 V.	Card Ground		: : :			
-7	>, = 20	> (1.2)	······································	Lur	· 12	WG.M.	6 6	1 15 C.S.	2 60		••••• 	
	?m = 20 = 20	Lurress M		¥	τξ			*erKatk*				· · · · · · · · · · · · · · · · · · ·
	Pg = Be	2,2 Pe	= {	5	ee	401	core	120	< 1	Pri	ub	00)
Per	Á						: 				·	
61	ron los 2		a ini din		· · · · · · · · ·	· · ·	· · · · · · ·		***** 1.** 1		· · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· • · · · · · · · · · ·			<u>.</u>		1	· · · · · ·
	·····		· ·· ·· · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				: ••••••••••••••••••••••••••••••••••••	· • • · · · ·	- 	
			·····			· · · · · · · · · · · · · · · · · · ·			······································		2 :	
					÷	····· • • • • • • • • • • • • • • • • •					: 	
	····· · · · · · · · · · · · · · · · ·	·····	• •••• ••••	••••••••••••••••••••••••••••••••••••••							÷	
					· · · · · · · · · · · · · · · · · · ·						· · · · ·	
			1	· · · · · · · · · · · · · · · · · · ·				:	e per entre terrer		·····	
• • •	:	·	· · · · · · · · · · · · · · · · · · ·	.							:	:
		: 			на страна 21.1.1. ўля на				 1997 - 1999 - 1999			-
				••••••	: • · · · · · · · ·				: - 		: 	
	· · · · · · · · · · · · · · · · · · ·				· ······		· · · · · · ·				.	
				<u>.</u>		· · ·	• • • • • • • •	· . .	<u>.</u>		: 	····
	· · · · · · · · · · · · · · · · · · ·				:				. ··· ····		, .	·····
	······································	····: · · ···· · · ···· :		••• •• •••	••••••	•••••			·····	: :	÷	······
	· · · · · · · · · · · · · · · · · · ·		· · · · • • · ·			· · · · · · · · · · ·			······		· · · · · · · · · · · · · · · · · · ·	
	······································	······································				····· · ·· ·	•• • • • • • • •				···· ·· · · ·	· ·•· · · · · · · · · ·
		·····				· · · · · · · · · · · ·	· . · · · · · · · · · · · ·					
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		ing an in Annan In Annan gunnan	····· ·· ·· ·· ··			• • • • • • • • • • • • • • • • • • •		••••••••••••••••••••••••••••••••••••••	
												······································

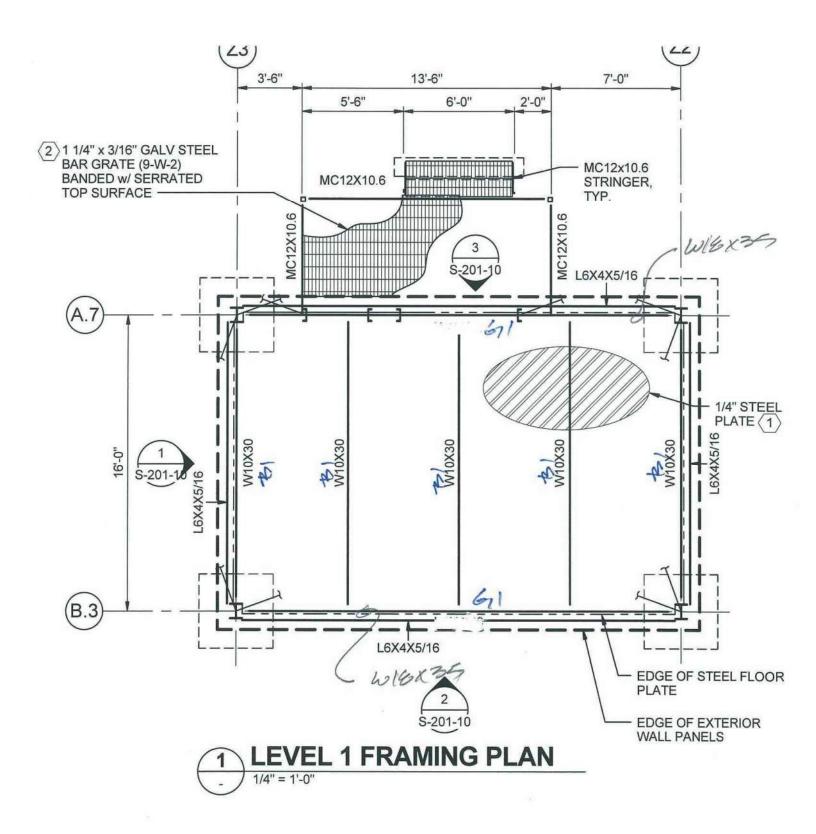
Date:	12/6/16	Shee	et of	ŧ
Project No.:	7481-	-27	20 of 178	3
By:	PIF	,		

	Men	tion de	> Adities
pg =	40	psf	Ground Snow Load
Ce =	0.9	120	Exposure Factor
Ct =	1		Thermal Factor
1=	1.2		Importance Factor
W =	16	ft	Horiz Dist from eave to ridge
θ =	1.79	deg	Roof slope
Cs =	1	100	Roof slope factor

Basic Snow L	.oads			
Flat Roof			Low Slope Roofs Use pf	Sloped Roofs
pf = .07*	pg*Ce*(Ct*I		ps = pf*Cs
pf =	30.2	psf	if θ > 38.00 deg	ps = 30.2 psf

Unbalanced Snow Loads for Hip and Gable Roofs

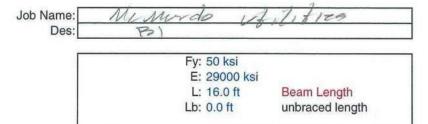
For the Leeward Side of the F For W <= 20 ft with rafter syst				
pub - I*pg				
pub = I*pg pub = 48 psf				
	$\gamma =$	19.2	pcf	"= .13pg+14
For all other conditions	γ max =	30	pcf	. •
	use			
pub = "ps"	$\gamma =$	19.2	pcf	
pub = 30.24 psf	hd =	1.84	ft	
$hd^{*}\gamma/sqrt(S) =$	torest. Instational to Martin	31.998		
pub add = 6.3 psf	8*sqrt(S)*hd / 3 =	27.81	ft	
Snow load for Windward Side				
For all other conditions				



Engineering Calculation Sheet

Date 12/12 Shelf of 178 of Contract 7481-77

Calculation No.


subject McMordo ufilities	Revision	By PF	Date	Chk'd	Date
- Romp House					
1	· · · ·				-
2 Check Floor 3MG					
3	· · · · · · · · · · · · · · · · · · ·				
4	: 				: .
	· · · · · · · · · · · · · · · · · · ·	Wy.	n the	·	:
6 = 240 H/SI		.)			••••••
		K	V	l	×
8 1,7 1,77 1,7	4	·····	: 	. · · · · · · · · · · · · · · · · · · ·	^
$ \begin{array}{c} s \\ s \\ w \\ \mu = 100 \ (4) \\ 10 \\ = 100 \ t \\ 5t \end{array} $			= 161		
$10 = 1000 \pm 1/100$	· · · · · · · · · · · · · · · · · · ·	·····	· · · · · · · · · · · · · · · · · · ·	· 	
11		: 			
12	·····		ويتعبر ويغر والا	*****	: :
$\begin{array}{c} 13\\ 14\\ 14\\ 14 \end{array} = \left(loos + 240 \right) \left(16 \right)^{2} \\ \overline{8} \end{array}$	UAN	= 40	16× 30	5 4-	
14 12 8	: 	50	low	ing Pr	2.6-
15 = Z6,880 #-5€		0	est		
= 26.9 - 56	·· · · · · · · · · · · · · · · · · · ·				Served Serve W & Fillen Letter at the Server Letter
	· · · · · · · · · · · · · · · · · · ·	i 	· · · · · · · · · · · · · · · · ·		
$\begin{bmatrix} 18 \\ 10 \end{bmatrix} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1}$:		·····	····· · <u>·</u> ··· · ·	···· ····· · · · · · · · · · · · · · ·
19 Check Floor Grinden		0).) []
$\frac{1}{20}$ $\frac{1}{100}$	· · · · · · · · · · · · · · · · · · ·	the second the second		7.	- Marin
$\frac{1}{22} = \frac{1}{240(6)}$		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
23 = 1920 #	4	j,			-7
24	X		อมหมองจางจุ่งสารสีวิสาร จุ่งสารสารสาร :	ionasonni t erminin terin	Å
25 Ru = 600 (B)	·····	, <i>Y</i>		, 1	
26 = 4,800 #		/	/		
27		<u>.</u>	6	"Le	y 1911
28 Pust = 15/16	n	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
29 = 240 #/66		la na marta a construit de la c La construit de la construit de	Electric august the second system of the second system of the second system of the second system of the second		
	INE WIE	3×35	for	<pre>////////////////////////////////////</pre>	· · · · · · · · · · · · · · · · · · ·
31	1-1-	der	620	follo	en / ma
32	Dr.	and -	asil		- A-
33		₩ & <u>8</u>	000		· · · · · · · · · · · · · · · · · · ·
1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16 17 1	8 19 20	21 22 23	24 25 26	27 28 29

	23 of 178	1
Date: 12/6/2016	Sheet of	1
Project No .:	7481-77	1
By:	PIF	

BEAM LOADS AND ANALYSIS - STEEL WIDEFLANGE BEAMS

Applied Loads

Mappl = 26.9 k-ft	
Mu = 38 k-ft	
$\phi = 0.9$	
D max = 0.5 in	
D est = 0.25 in	
Ireq = 85 in4	estimate

Member Properties

TRY:	W10X30
Sx=	32.4 in ³
Ix=	170.0 in4
ly=	16.7 in4
Zx=	36.6 in ³
d=	10.47 in
h =	8.60 in
J	0.62 in
Cw	414.0 in
ry	1.374 in
ho	9.96 in
tf =	0.51 in
bf =	5.81 in
tw =	0.30 in
rts =	1.60

Check Flex	ural Com	pact Requ	uirements
-------------------	----------	-----------	-----------

Flang	
$\lambda = b/(2^*tf) =$	5.70
$\lambda p = .38^{*} sqrt(E/Fy) =$	9.15
$\lambda r = 1^{*} \text{sqrt}(\text{E/Fy}) =$	24.08
$b/t \le .38^{sqrt}(E/Fy) =$	Member is Compact
Web	
$\lambda = h/tw =$	28.7
$\lambda p = 3.76^* \text{sqrt}(\text{E/Fy}) =$	90.6
$\lambda r = 5.7^* \text{sqrt}(\text{E/Fy}) =$	137.3
h/t<=3.76*sqrt(E/Fy) =	Member is Compact

Lengths

 Lp = 4.9 ft	
Lr = 16.1 ft	
Cb: 1	
Fcr = 510092158311.5 ksi	

Date: 12/6/2016	Sheet	24 of 178 of
Project No .:	7481-77	
Bv:	PIF	

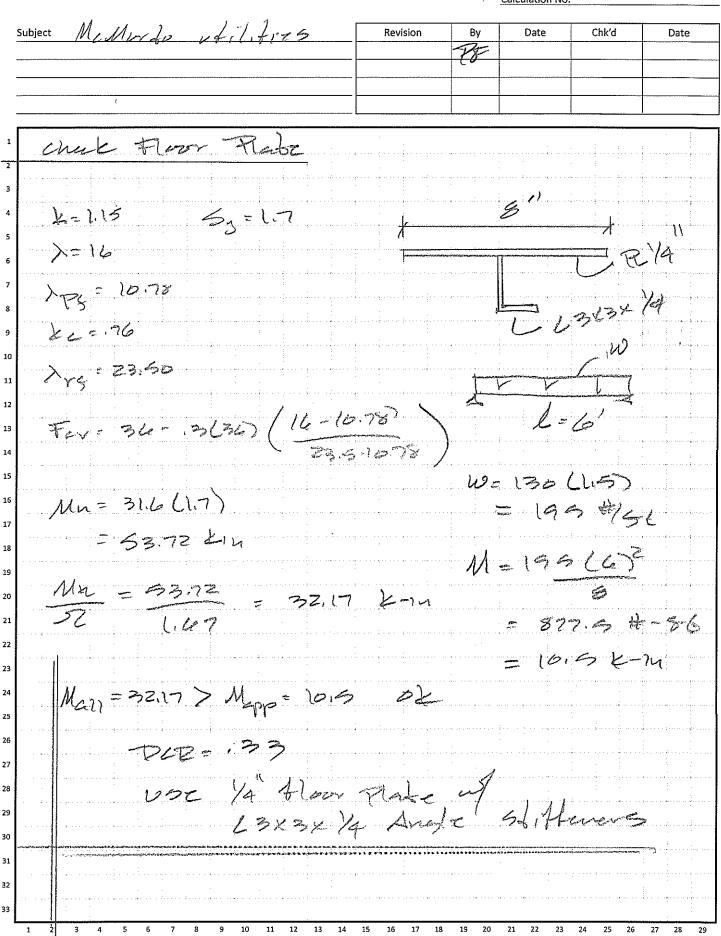
Compact I S	Shapes					
If Lb<=Lp						
	152.5 k-ft	3	=Fy*Z	ĸ		(eq F2-1)
φMn =	137.3 k-ft					
lf Lp < Lb <:	= Lr					
Mn =	177.4 k-ft		=Cb(N	lp-(Mp-	.7*Fy*Sx)*((Lb-Lp)/(Lr-Lp))) <=Mp	(eq F2-2)
φMn =	159.7 k-ft					
If Lb > Lr						
Mn =	137724882744	1.0 k-ft	=Fcr*S	6x <= M	р	(eq F2-3)
φMn =	123952394469	5.9 k-ft				
Non-compa	ct flanges					
Mn =	165.9 k-ft	13	=Cb(N	lp-(Mp-	.7*Fy*Sx)*((λb-λp)/(λr-λp))) <=Mp	(eq F3-1)
φMn = 1	149.3 k-ft					
Slender Fla	nges					
kc = 0	0.747					
Mn = 1	1623.1 k-ft	1	=.9*E*	kc*Sx /	λ^2	(eq F3-2)
φMn =	1460.8 k-ft					
Member is (Compact					
Lb<=Lp						
USE	(eq F2-1)					
φMn =	137.3 k-ft	DCR =	0.28	OK	Strength Design	
$Mn/\Omega =$	91.3 k-ft	DCR =	0.29	OK	Allowable Stress Design	

Gravity Beam Design

RAM SBeam v5.01

12/06/16 14:29:03

STEEL C	CODE: AI	SC 360-	05 AS	D	611						
Beam Total Mp (l	FORMAT Size (Use Beam Len kip-ft) lange brace	$r \text{ Selector} \\ gth (ft) \\ = 27'$	ed) 7.08	=)0,0.00) J W18X35 24.00	J-End (2	4.00,0.0	0)	Fy =	50.0 ksi	
POINT L	OADS (ki	ps):									
			Flang	e Braci	ing						
Dist (ft)	DL	LL	Тор	Bot	tom						
6.000	1.92	4.80	Yes	N	ío						
12.000	1.92	4.80	Yes	N	бо						
18.000	1.92	4.80	Yes	N	ĺo						
LINE LO	ADS (k/ft):									
Load	Dist (ft)	D	L	LL							
1	0.000	0.03	35	0.000							
	24.000	0.03	35	0.000							
2	0.000	0.24		0.000							
	24.000	0.24	40	0.000							
SHEAR:	Max Va (DL+LL	<i>.</i>) = 13.	38 kips	s Vn/1.50	= 106.20) kips				
MOMEN	TS:										
Span	Cond]	LoadCo	ombo	Ma	(<u>@</u>	Lb	Cb	Ω	Mn / Ω
-					kip-ft		ft	ft			kip-ft
Center	Max +	-]	DL+LL	,	100.4	12.	0	0.0	1.00	1.67	165.92
Controllin	g]	DL+LL		100.4	12.	.0	0.0	1.00	1.67	165.92
REACTI	ONS (kips):									
	action	,			Left 6.18	Right 6.18					
Max -	+LL reaction	on			7.20	7.20					
Max -	+total react	ion			13.38	13.38					
DEFLEC	TIONS:										
	load (in)			at	12.00 ft	=	-0.292		L/D =	985	
Live l	oad (in)			at	12.00 ft	=	-0.384		L/D =	751	
Net T	otal load (i	n)		at	12.00 ft		-0.676		L/D =	426	

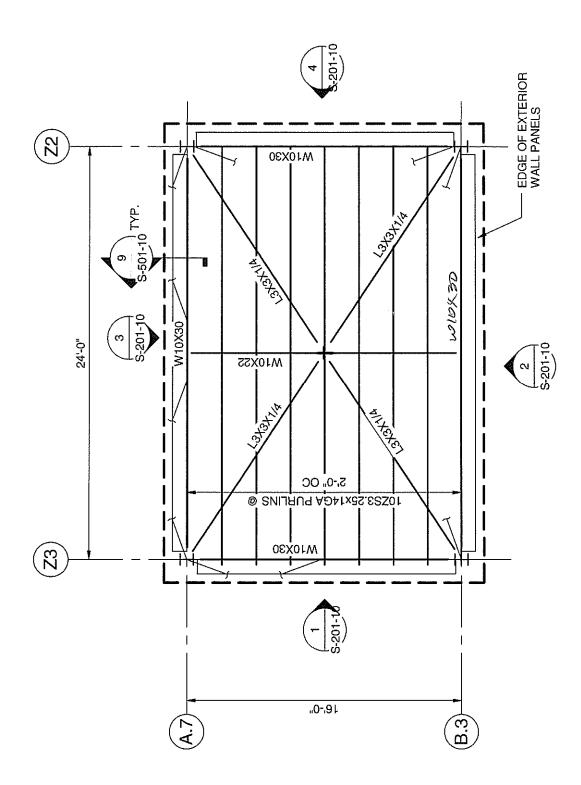


Engineering Calculation Sheet

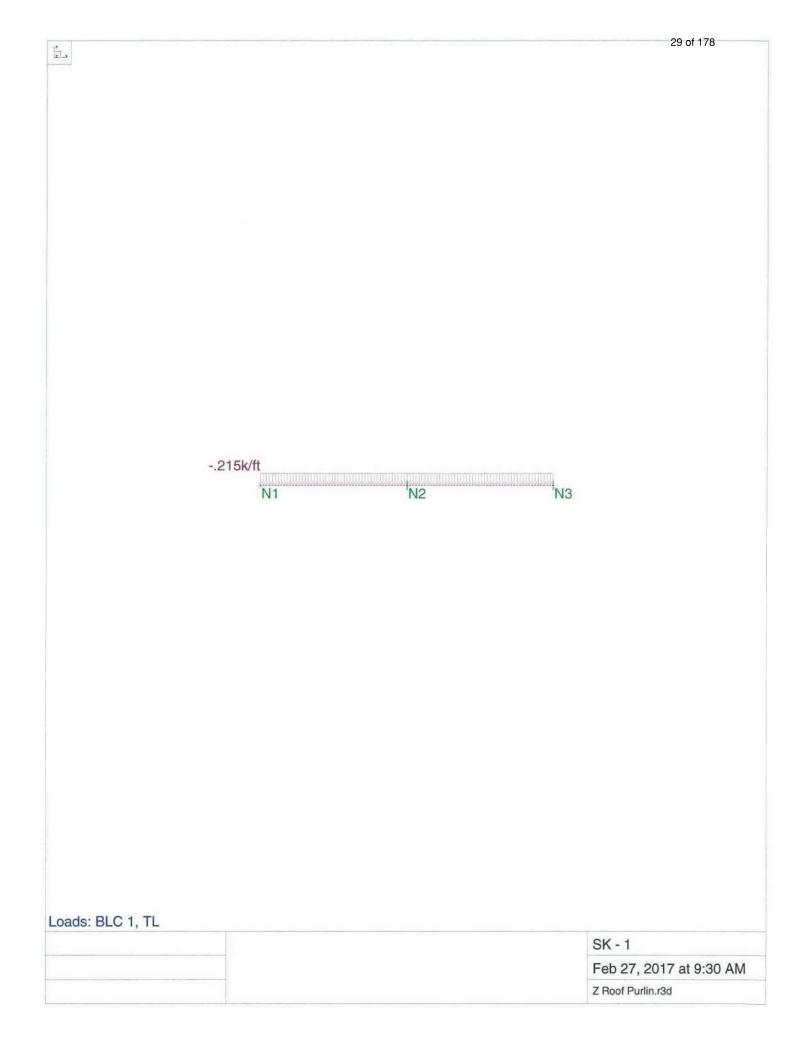
011-2010A

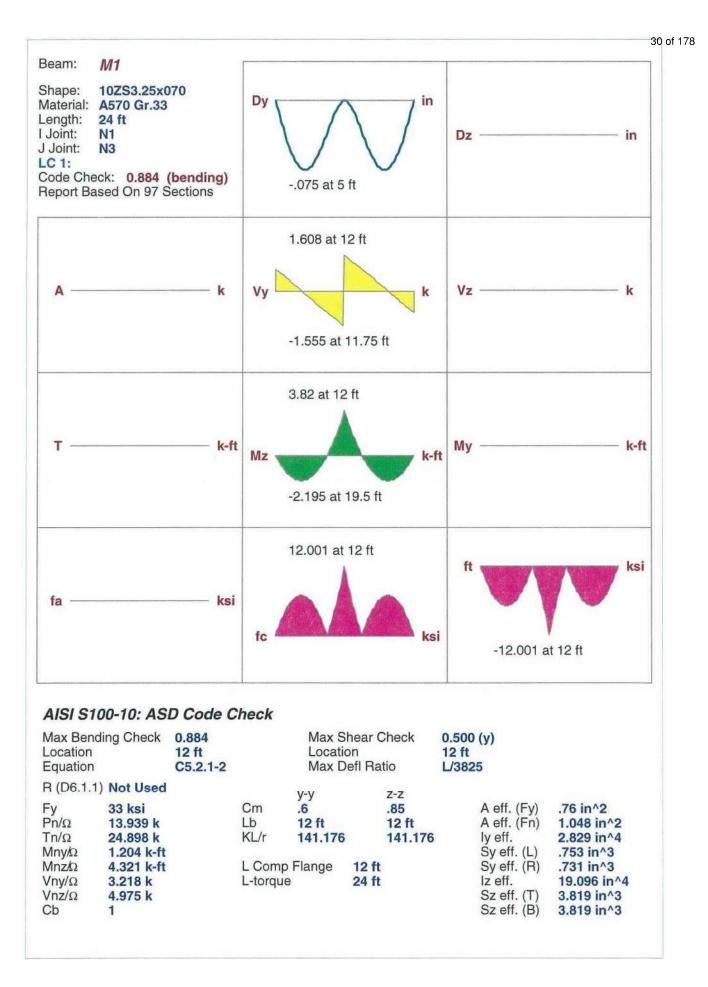
Date 3/ / She@16 of 178 of 7481-77

Contract 7481 Calculation No.


Engineering Calculation Sheet

Date 3// Sheet^{27 of 178} of Contract 7431-77


011-2010A


Calculation No.

oject Mc Murds	Revision	Ву	Date	Chk'd	Date
		PF			
Ubilitiza					
Pump House					
		4	:		
* Check Fort Fram	ng ber c	ladd 12	3		·····
				- 	•
* based on Bash	Pressource	42			····· ÷···· •
use 2' spectru	A GU	paperol		water	40°
		¥ /		 Annon an an an an	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
(WTL				1	
	V V V	<u> </u>	\mathcal{V}	V	
	A		• • •	.∢	
- Vincenter and the second sec				L	
w = z(1z1)	121	12	1	T	
We				·	
WW = Z (121) + = ZAZ + Age			•	• · · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·				• • • • • • • • • • • • • • • • • • •
$\frac{\nu_{bL}}{2} = \frac{23(2)}{4}$			14	94	
	USE LOZ	3.26 X	1-712	in ng in na marang	••••••••••••••••••••••••••••••••••••••
				_)	
· 4006 = - 6 (46) (ter	-Port	1.4272 6		· · · · · · · · ·
- 27-41,	2	96	····· 2 ·······························	<u>.</u>	
			anner fan gewonen oost sjoet waren fer		i i i i i i i i i i i i i i i i i i i
- 1	non kanalasan			.	
W = CTC = C/		···•• ······••••••••••••••••••••••••••		• · · · · · · · · · · · · · · · · · · ·	:
= 215 #/41			· · · · · ·	<u>.</u>	
				:	······
				: 	
	···· • • • • • • • • • • • • • • • • •				
				1 1 	
	···· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·	· · ·	: 	·
	····	<u>.</u>		· · · · · · · · · · · · · · · · · · ·	
				·	

Fust

Engineering Calculation Sheet

Sheet of 178

011-2010A

Contract Calculation No.

Date

Subject	Revis	ion	Ву	Date		Chk'd	Date
1					:		
2) Check lumber bupport	Gir	der					
3	ن بر بر بر الم	······					
4					· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
5 Trib Area / Werl	ļ					1	·····
6 ZILLAZ	jaten en journen tim				:	· · ·	
		na parang na pang dan mang dan mang dan mang dan mang mang mang mang mang dan mang dan mang dan mang dan mang d	07 2200 0 4207230723072307	<u> </u>		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •
9			<u>.</u>			· · · · · · · · · · · · · · · · · · ·	
10 1, 79(17)	L=	16			· · · · · · .		in an
$\frac{10}{11} \frac{W}{WL} = \frac{78(12)}{12}$	•••••				:		·····
$= 936 \frac{1}{5}$	44- 			••••••		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
13							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$:	· · · · · · · · · · · · · · · · · · ·	
15 = 360 \$156 U.	se l	2108	22		see		
16		Feell	102-1	in	72	nub	
" + le les th = . le (360)		ort					
= 216 = 746 = -							· · · · · · · · · · · · · · · · · · ·
$\frac{10}{10} W_{12} = 936 - 216$		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
$T_{L} = \frac{1}{12} + \frac{1}{12}$				·····	<u>.</u>	.	·····
$= 220 \# 55 \ Up$			· · · · · · · · · · · · ·	·····		••••••••••••••••••••••••••••••••••••••	· · · · · · · {· · · · · · }
23	• · · · • • • · · • • • • • • • • • • •						1
24 My = 720 (14)							
- 73040 - 56		• • • • • • • • • • • • •				· · · · · · · · · · · · · · · · · · ·	·····
27				t i i Principalita	: : :	1	
	:			:		: £	· · · · · · · · · · · · · · · · · · ·
					· · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·
31			····•	· · · · · · · · · · · · · · · · · · ·			•
22			1 : 			: :	· · · · · · · · · · · · · · · · · · ·
33	· · · · · · · · · · · · · · · · · · ·			•••••		; ;	· · · · · · · · · · · · · · · · · · ·
1 2 3 4 5 6 7 8 9 10 11 12 13 14	15 16	17 10	10 10	~ ~ ~~			

	32 of 178
Date: 2/27/2017	Sheet of
Project No.:	7481-77
By:	PIF

BEAM LOADS AND ANALYSIS - STEEL WIDEFLANGE BEAMS

	McMurdo Utilities
Des:	Pump House roof beam

Fy: 50 ksi	
E: 29000 k	si
L: 16.0 ft	Beam Length
Lb: 16.0 ft	unbraced length

Applied Loads

Mappl = 23 k-ft	
Mu = 32.2 k-ft	
$\phi = 0.9$	
D max = 1 in	
D est = 0.31 in	
Ireq = 37 in4	estimate

Member Properties

TRY: W10X22
Sx= 23.2 in ³
Ix= 118.0 in4
ly= 11.4 in4
Zx= 26.0 in ³
d= 10.17 in
h = 8.67 in
J 0.24 in
Cw 275.0 in
ry 1.325 in
ho 9.81 in
tf = 0.36 in
bf = 5.75 in
tw = 0.24 in
rts = 1.55

Check	Flexural	Compact	Requirements
-------	----------	---------	--------------

Flang	
$\lambda = b/(2^*tf) = 2$	7.99
$\lambda p = .38^* \text{sqrt}(\text{E/Fy}) = 9$	9.15
$\lambda r = 1^* \text{sqrt}(\text{E/Fy}) = 2$	24.08
b/t<=.38*sqrt(E/Fy) =	Member is Compact
Web	
$\lambda = h/tw = 3$	36.1
$\lambda p = 3.76^* \text{sqrt}(\text{E/Fy}) = 9$	90.6
$\lambda r = 5.7^* \text{sqrt}(\text{E/Fy}) = 1$	137.3
h/t<=3.76*sqrt(E/Fy) =	Member is Compact

Lengths

Lp = 4.7 ft	
Lr = 13.8 ft	
Cb: 1	
Fcr = 28.1 ksi	

Date: 2/27/2017	Sheet	33 of 178 of
Project No.:	7481-77	
Bv:	PIF	

Compact I S	Shapes					
	1.12					
If Lb<=Lp						
	108.3 k-ft		=Fy*Z	ĸ		(eq F2-1)
φMn = 9	97.5 k-ft					
If Lp < Lb <=	= Lr					
	58.0 k-ft		=Cb(N	lp-(Mp-	7*Fy*Sx)*((Lb-Lp)/(Lr-Lp))) <=Mp	(eq F2-2)
φMn = 5	52.2 k-ft					
lf Lb > Lr						
Mn = 5	54.4 k-ft		=Fcr*S	Sx <= M	р	(eq F2-3)
φMn = 4	49.0 k-ft					
Non-compac	ct flanges					
Mn = 1	111.5 k-ft		=Cb(N	lp-(Mp	7*Fy*Sx)*((λb-λp)/(λr-λp))) <=Mp	(eq F3-1)
φMn = 1	100.4 k-ft					
Slender Flar	nges					
kc = 0	0.666					
Mn = 5	526.5 k-ft		=.9*E*	kc*Sx /	λ^2	(eq F3-2)
φMn = 4	173.9 k-ft					
Member is C	Compact					
Lb > Lr	1					
USE	(eq F2-3)					
φMn =	49.0 k-ft	DCR =	0.66	OK	Strength Design	
$Mn/\Omega =$	32.6 k-ft	DCR =	0.71	OK	Allowable Stress Design	

Engineering Calculation Sheet

Sheet of 178 of

011-2010A

Contract	
Calculation No.	

Date

Subject Mc Mrv 26	Revisi	on	Ву	Date		.hk'd	Date	2
Ub. 1. 1 175								
Terms House								
		1		: *	I	I	:	í
	8				· · · · · · · · · · · · · · · · · · ·			
* Exterior Cladding	: 	···· ·····	• • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·		· · · · · · • • • · · · · · · ·	
4 modated Panel	A 1	.0~11		···· 4. ···.				
				:				
USE & GEARING AS	× 11212	2 1	1.2	ر جریا ک	~		1	· ••• · · ·
use à geacing to see following From	2 ord		-1, -3 ² - 1 <u>0</u>	1	100	· · · · · · · · · · · · · · · · · · ·		
	1997							
* BIZE Horiz Girt	-				· 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	 	166	4.5) =	218	#15-6	·	
	6	t x	· · · · · · · · · · · · · · · · · · ·					
	· · · · · · · · · · · · · · · · · · ·				·····			:
<u>s</u>			R		· · · · · · · · · · · ·			4
	24'	· · · ·	· .		.		· · · · • · • · •	
M= 15,696 #-56		· · · · · ·						, ;
= 15.7 4-56				4	· · · · · · · · · · · · · · · · · · ·			:
= 185.4 K-14	DOC M	29	x 23	. 7	· · · · · · · · · · · · · · · · · · ·			بر م
= 188.4 - 100		11/	= 2	1 4-	56	<1	5.74	-5
		[SC			- 	110	Z	
		<u>1</u>	· · · · · · · · · · · · · · · · · · ·			-		·
· · · · · · · · · · · · · · · · · · ·								·····
· · · · · · · · · · · · · · · · · · ·	<u>.</u>							
						· · · · į · · · · i	;	4
			· · · · 6 1					
· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	······································	· · · · · · · · · · · · · · · · · · ·		<u>.</u>		·····	
				· ··· · · · · · · · · ·	e e specielo e		·····	4
							····· · ·····	
		n din ng					· · · · · · · · · · · · · · · · · · ·	• • • • • •
e na su	· · · · · · · · · · · · · · · · · · ·		· · · · •	· · · · · · · · · · · ·	• •		· · · · · · · · · · · · · · · · · · ·	
	14 15 16					· ·		

ंह

= /\\'					Firstal	Represei	ntativo	Ke	eyword \$	Search		
SPAN [®]					r muja i	velsi isser	(IL2LIVE		syword	Gearcin		
Commercial & Cold Stora Industrial	ige ThermalSafe	CFR & Ro System		Vision an ope Solutio		ngle-Sk Pane		R	lesource	MS		
										letl-Sp ROJECT		Y
PRODUCTS COMMERCIA	AL & INDUSTRIAL	CF ARCHITECTU	RAL WALL PA	NEL	LOAD	SPAN T	ABLES					_
.2 Insul-Rib‴ Wall Panel F Architectural Wall	Load Span	Tables			VS	12	S	4"	F	Zava	e)	
Panel	For FM Glob	al Requirem	ents, Click	Here								
Colors	To View Fast	tening Patte	rns. Click	Here								
Guide Specifications	The Load Spar	and the second second			e Stres	s Desi	gn (ASI	D). For	loads c	alculat	ed bas	ed on
Load Span Tables	ASCE 7-10 (LR		fer to sectio	on 2.4.1 o	f ASCE	7-10 f	or the a	applica	ble loa	d comb	inatior	ns using
Material Specifications	Allowable Stre	ess Design.										
Tests & Certifications		\sim	letl-Span	Archit	ectu	ral Fla	at Wa	II Par	nels			
			letl-Span 22 Ga. Ex									
F Flute Wall Panel		2	2 Ga. Ex	terior /	26 G	ia. Int	erior	Facir	ngs			
F Flute Wall Panel F Light Mesa	Allov		2 Ga. Ex	terior /	26 G	a. Int sf) fo	erior	Facir o or N	ngs Aore			¹⁵ 7
F Flute Wall Panel F Light Mesa F Mesa	Allow	2 wable Coni	2 Ga. Ex	terior /	26 G	a. Int sf) fo	erior	Facir o or N	ngs Aore	Equal		15
F Flute Wall Panel F Light Mesa F Mesa F Partition Wall	Allov Panel Type ²	2	2 Ga. Ex	terior / .oad ^{1,6,}	26 G	a. Int sf) fo	erior	Facir o or N	ngs Aore			15
F Flute Wall Panel F Light Mesa F Mesa F Partition Wall PCI Barrier™ Wall Panel		2 wable Coni	2 Ga. Ex	terior / .oad ^{1,6,}	^{7.8} (p	sf) fo	erior	Facir o or N	ngs Aore	sup	ypo	A
F Flute Wall Panel F Light Mesa F Mesa F Partition Wall PCI Barrier [™] Wall Panel anta Fer Wall Panel		2 wable Coni	22 Ga. Ex nection L Thickness	terior / .oad ^{1,6,} Support	^{7.8} (p t Span 5' 42.8	sf) fo	erior or Two US	Facir 5 or N 2 8' 25.4	ngs Nore 4 9'	5 UY	11' 18.0	12'
F Flute Wall Panel F Light Mesa F Mesa F Partition Wall PCI Barrier [™] Wall Panel anta Fe [®] Wall Panel triated Wall Panel		2 wable Coni	22 Ga. Ex nection L Thickness 2" 2.5"	terior / .oad ^{1,6,} Support 4' 54.8 56.7	^{7.8} (p t Span 5' 42.8 44.3	6' 35.0 36.2	erior or Two 0 7' 29.5 30.5	Facir o or N 2 8' 25.4 26.3	ngs Aore 4 9' 22.4 23.1	5 у 10' 20.0 20.6	11' 18.0 18.6	12' 16.4 16.9
F Flute Wall Panel F Light Mesa F Mesa F Partition Wall IPCI Barrier [™] Wall Panel anta Fe ⁺ Wall Panel triated Wall Panel uff-Cast [™]		2 wable Conr Fastener ^{34,5}	22 Ga. Ex nection L Thickness 2" 2.5" 3"	terior / .oad ^{1,6,} Support 4' 54.8 56.7 58.4	^{7.8} (p t Span 5' 42.8 44.3 45.7	6' 35.0 36.2 37.4	r Two 7' 29.5 30.5 31.5	Facir D or N 25.4 26.3 27.1	ngs Aore 9' 22.4 23.1 23.8	10' 20.0 20.6 21.2	11' 18.0 18.6 19.1	12' 16.4 16.9 17.4
F Flute Wall Panel F Light Mesa F Mesa F Partition Wall PCI Barrier [™] Wall Panel anta Fe [®] Wall Panel triated Wall Panel uff-Cast [™]	Panel Type ²	2 wable Conr Fastener ^{34,5}	22 Ga. Ex nection L Thickness 2" 2.5" 3" 4"	terior / .oad ^{1,6,} Support 4' 54.8 56.7 58.4 61.5	^{7.8} (p t Span 5' 42.8 44.3 45.7 48.4	a. Int sf) fo 6' 35.0 36.2 37.4 39.6	r Two 7' 29.5 30.5 31.5 33.4	Facir D or N 25.4 26.3 27.1 28.8	ngs Aore 9' 22.4 23.1 23.8 25.3	5 y 10' 20.0 20.6 21.2 22.5	11' 18.0 18.6 19.1 20.2	12' 16.4 16.9 17.4 18.4
F Flute Wall Panel F Light Mesa F Mesa F Partition Wall PCI Barrier [™] Wall Panel anta Fe [®] Wall Panel triated Wall Panel uff-Cast [™] uff Wall [®] FR Roof Panel	Panel Type ²	2 wable Conr Fastener ^{3,4,5} FP1	22 Ga. Ex nection L Thickness 2" 2.5" 3"	terior / .oad ^{1,6,} Support 4' 54.8 56.7 58.4	^{7.8} (p t Span 5' 42.8 44.3 45.7	6' 35.0 36.2 37.4	r Two 7' 29.5 30.5 31.5	Facir D or N 25.4 26.3 27.1	ngs Aore 9' 22.4 23.1 23.8	10' 20.0 20.6 21.2	11' 18.0 18.6 19.1	12' 16.4 16.9 17.4
F Flute Wall Panel F Light Mesa F Mesa F Partition Wall PCI Barrier [™] Wall Panel anta Fe [®] Wall Panel triated Wall Panel uff-Cast [™] uff Wall [®] FR Roof Panel S-36 [™] Insulated Roof	Panel Type ² CF-36	2 wable Conr Fastener ^{3,4,5} FP1	22 Ga. Ex nection L Thickness 2" 2.5" 3" 4"	terior / .oad ^{1,6,} Support 4' 54.8 56.7 58.4 61.5	^{7.8} (p t Span 5' 42.8 44.3 45.7 48.4	a. Int sf) fo 6' 35.0 36.2 37.4 39.6	r Two 7' 29.5 30.5 31.5 33.4	Facir D or N 25.4 26.3 27.1 28.8	ngs Aore 9' 22.4 23.1 23.8 25.3	5 y 10' 20.0 20.6 21.2 22.5	11' 18.0 18.6 19.1 20.2	12' 16.4 16.9 17.4 18.4
F Flute Wall Panel F Light Mesa F Mesa F Partition Wall PCI Barrier [®] Wall Panel anta Fe [®] Wall Panel triated Wall Panel uff-Cast [®] uff Wall [®] FR Roof Panel S-36 [®] Insulated Roof nd Wall Panel	Panel Type ² CF-36	2 Wable Conr Fastener ^{3,4,5} FP1	22 Ga. Ex nection L Thickness 2" 2.5" 3" 4" 2"	terior / .0ad ^{1,6,} Support 4' 54.8 56.7 58.4 61.5 66.0	^{7.8} (p t Span 5' 42.8 44.3 45.7 48.4 51.5	a. Int sf) fo 6' 35.0 36.2 37.4 39.6 42.1	r Two 7' 29.5 30.5 31.5 33.4 35.5	Facir o or N 25.4 26.3 27.1 28.8 30.6	ngs Aore 9' 22.4 23.1 23.8 25.3 26.9	5 y 10' 20.0 20.6 21.2 22.5 24.0	11' 18.0 18.6 19.1 20.2 21.7	12' 16.4 16.9 17.4 18.4 19.7
F Flute Wall Panel F Light Mesa F Mesa F Partition Wall PCI Barrier [®] Wall Panel anta Fe Wall Panel triated Wall Panel uff-Cast [®] uff Wall [®] FR Roof Panel S-36 [®] Insulated Roof nd Wall Panel	Panel Type ² CF-36 Architectural	2 Wable Conr Fastener ^{3,4,5} FP1	22 Ga. Ex nection L Thickness 2" 2.5" 3" 4" 2" 2.5"	terior / .0ad ^{1,6,} Support 4' 54.8 56.7 58.4 61.5 66.0 71.4	^{7.8} (p ^{7.8} (p t Span 5' 42.8 44.3 45.7 48.4 51.5 55.8	a. Int sf) fc 6' 35.0 36.2 37.4 39.6 42.1 45.6	r Two 7' 29.5 30.5 31.5 33.4 35.5 38.4	Facir o or N 25.4 26.3 27.1 28.8 30.6 33.1	ngs Aore 9' 22.4 23.1 23.8 25.3 26.9 29.1	10' 20.0 20.6 21.2 22.5 24.0 25.9	11' 18.0 18.6 19.1 20.2 21.7 23.4	12' 16.4 16.9 17.4 18.4 19.7 21.3
F Flute Wall Panel F Light Mesa F Mesa F Partition Wall PCI Barrier [™] Wall Panel anta Fe Wall Panel triated Wall Panel uff-Cast [™] uff Wall [®] FR Roof Panel S-36 [™] Insulated Roof nd Wall Panel	Panel Type ² CF-36 Architectural	2 Wable Conr Fastener ^{3,4,5} FP1	22 Ga. Ex nection L Thickness 2" 2.5" 3" 4" 2.5" 3" 4" 2.5" 3"	terior / .oad ^{1,6.} Support 4' 54.8 56.7 58.4 61.5 66.0 71.4 76.6	^{7.8} (p ^{7.8} (p t Span 5' 42.8 44.3 45.7 48.4 51.5 55.8 60.0	a. Int sf) fc 6' 35.0 36.2 37.4 39.6 42.1 45.6 49.1	r Two 7' 29.5 30.5 31.5 33.4 35.5 38.4 41.3	Facir o or N 25.4 26.3 27.1 28.8 30.6 33.1 35.6	ngs Aore 9' 22.4 23.1 23.8 25.3 26.9 29.1 31.3	10' 20.0 20.6 21.2 22.5 24.0 25.9 27.8	11' 18.0 18.6 19.1 20.2 21.7 23.4 25.1	12' 16.4 16.9 17.4 18.4 19.7 21.3 22.8
F Flute Wall Panel F Light Mesa F Mesa F Partition Wall PCI Barrier [™] Wall Panel anta Fe Wall Panel triated Wall Panel uff-Cast [™] uff Wall [®] FR Roof Panel S-36 [™] Insulated Roof nd Wall Panel	Panel Type ² CF-36 Architectural	2 Wable Conr Fastener ^{34,5} FP1 FP2	22 Ga. Ex nection L Thickness 2" 2.5" 3" 4" 2.5" 3" 4" 2.5"	terior / .oad ^{1,6.} Support 4' 54.8 56.7 58.4 61.5 66.0 71.4 76.6 86.9	^{7.8} (p ^{7.8} (p t Span 5' 42.8 44.3 45.7 48.4 51.5 55.8 60.0 68.4	a. Int sf) fo 6' 35.0 36.2 37.4 39.6 42.1 45.6 49.1 56.0	r Two 7' 29.5 30.5 31.5 33.4 35.5 38.4 41.3 47.2	Facir o or N 25.4 26.3 27.1 28.8 30.6 33.1 35.6 40.7	ngs Aore 9' 22.4 23.1 23.8 25.3 26.9 29.1 31.3 35.7	10' 20.0 20.6 21.2 22.5 24.0 25.9 27.8 31.8	11' 18.0 18.6 19.1 20.2 21.7 23.4 25.1 28.6	12' 16.4 16.9 17.4 18.4 19.7 21.3 22.8 26.0
EF Flute Wall Panel EF Light Mesa EF Mesa EF Partition Wall PCI Barrier [®] Wall Panel anta Fe [®] Wall Panel triated Wall Panel uff-Cast [®] uff Wall [®] FR Roof Panel S-36 [®] Insulated Roof nd Wall Panel ATA SHEET > EW BROCHURE > D REQUEST >	Panel Type ² CF-36 Architectural	2 Wable Conr Fastener ^{3,4,5} FP1	22 Ga. Ex nection L Thickness 2" 2.5" 3" 4" 2.5" 3" 4" 2.5" 3" 4" 2.5"	terior / .oad ^{1,6.} Support 4' 54.8 56.7 58.4 61.5 66.0 71.4 76.6 86.9 88.3	^{7.8} (p ^{7.8} (p t Span 5' 42.8 44.3 45.7 48.4 51.5 55.8 60.0 68.4 69.0	a. Int sf) fo 6' 35.0 36.2 37.4 39.6 42.1 45.6 49.1 56.0 56.3	r Two 7' 29.5 30.5 31.5 33.4 35.5 38.4 41.3 47.2 47.0	Facir o or N 25.4 26.3 27.1 28.8 30.6 33.1 35.6 40.7 38.9	ngs Aore 9' 22.4 23.1 23.8 25.3 26.9 29.1 31.3 35.7 32.4	10' 20.0 20.6 21.2 22.5 24.0 25.9 27.8 31.8 27.2	11' 18.0 18.6 19.1 20.2 21.7 23.4 25.1 28.6 23.1	12' 16.4 16.9 17.4 18.4 19.7 21.3 22.8 26.0 19.7
CF Flute Wall Panel CF Light Mesa CF Mesa CF Partition Wall HPCI Barrier [®] Wall Panel Santa Fe [®] Wall Panel Striated Wall Panel Striated Wall Panel CFR Roof Panel CFR Roof Panel CFR Roof Panel ATA SHEET	Panel Type ² CF-36 Architectural	2 Wable Conr Fastener ^{34,5} FP1 FP2	22 Ga. Ex nection L Thickness 2" 2.5" 3" 4" 2.5" 3" 4" 2.5" 2.5"	terior / .0ad ^{1,6,} Support 4' 54.8 56.7 58.4 61.5 66.0 71.4 76.6 86.9 88.3 90.0	26 G 7.8 (p 5' 42.8 44.3 45.7 48.4 51.5 55.8 60.0 68.4 69.0 70.4	a. Int sf) fc 6' 35.0 36.2 37.4 39.6 42.1 45.6 49.1 56.0 56.3 57.5	r Two 7' 29.5 30.5 31.5 33.4 35.5 38.4 41.3 47.2 47.0 48.4	Facir o or N 2 25.4 26.3 27.1 28.8 30.6 33.1 35.6 40.7 38.9 41.8	ngs Aore 9' 22.4 23.1 23.8 25.3 26.9 29.1 31.3 35.7 32.4 36.7	10' 20.0 20.6 21.2 22.5 24.0 25.9 27.8 31.8 27.2 32.7	11' 18.0 18.6 19.1 20.2 21.7 23.4 25.1 28.6 23.1 29.5	12' 16.4 16.9 17.4 18.4 19.7 21.3 22.8 26.0 19.7 26.3

Need Help?	
LIVE CHAT	
Weekdays 8am	5pm CST

		2.5"	74.3	58.1	47.4	40.0	34.5	30.3	27.0	24.3	22.2
		3"	76.3	59.8	48.9	41.2	35.5	31.1	27.7	25.0	22.7
		4"	80.0	62.9	51.5	43.5	37.5	32.9	29.2	26.3	23.9
		2"	90.8	70.9	57.9	47.0	38.9	32.4	27.2	23.1	19.7
CF-30	FP2	2.5"	95.5	74.7	61.0	51.4	44.3	38.9	34.7	30.5	26.3
Architectural	FPZ	3"	100.0	78.3	64.0	53.9	46.5	40.8	36.3	32.7	29.8
Flat		4"	108.5	85.3	69.9	59.0	50.8	44.6	39.7	35.7	32.4
		2"	90.8	71.3	57.9	47.0	38.9	32.4	27.2	23.1	19.7
	FP3	2.5"	103.5	81.2	66.7	56.5	49.1	41.7	35.5	30.5	26.3
	FP3	3"	109.7	86.0	70.2	59.2	51.0	44.8	39.9	35.9	32.4
		4"	112.4	88.4	72.5	61.1	52.7	46.2	41.1	37.0	33.6
		2"	89.3	69.7	56.9	47.0	38.9	32.4	27.2	23.1	19.7
	FDA	2.5"	91.9	71.9	58.7	49.5	42.7	37.5	33.4	30.1	26.3
	FP1	3"	94.3	73.9	60.4	50.9	43.8	38.5	34.3	30,9	28.1
CF-24		4"	98.5	77.5	63.5	53.5	46.2	40.5	36.0	32.4	29.4
Architectural Flat		2"	90.8	71.3	57.9	47.0	38.9	32.4	27.2	23.1	19.7
	500	2.5"	103.5	81.2	66.7	56.5	49.1	41.7	35.5	30.5	26.3
	FP2	3"	115.2	90.3	74.1	62.7	54.4	48.0	42.9	37.2	32.4
		4"	121.9	95.6	78.4	66.2	57.3	50.5	45.1	40.8	37.2
Votes:			F	6	4	2	8	9	10	1	IS

 The Load Span Table above is based on Allowable Stress Design (ASD). For loads calculated based on ASCE 7-10 (LRFD), please refer to section 2.4.1 of ASCE 7-10 for the applicable load combinations using Allowable Stress Design.

 Based on CF-panel with 22 ga. Architecturally Flat exterior and 26 ga. Light Mesa interior face (min Fy = 33 ksi).

 Fastener pattern FP1 is based on CF panel clips fastened to min. 14 ga. steel. Fastener options will be (2) ¼" -14 SDS Type 3, (2) ¼" -14 Self-Tapping, (2) ¼" -14 Type 5 SDS, or ¼" -20 Type 5 SDS. Fastener selection will be based on fastener pullout capacity from support steel members.

4. For CF-30, FP2 is based on FP1 along with (1) blind rivet at 10" o.c. from female panel sidelap. For CF-24 and CF-36, FP2 is based on FP1 along with (1) blind rivet at 12" o.c from female panel sidelap.

5. For CF-30, FP3 is based on FP1 along with (2) blind rivets at 10" o.c. from female panel sidelap. For CF-36, FP3 is based on FP1 along with (2) blind rivets at 12" o.c. from female panel sidelap.

 Allowable loads based on panel stress, connection strength and deflection design criteria are derived from ASTM E72 and E1592 structural testing.

7. The allowable inward or outward loads is the smallest load calculated with a factor of safety of 2.5 for bending stress, 3.0 for shear stresses, 2.0 for connection and deflection limitation of L/180.

8. The structural capacity of the supports are not considered and must be examined independently.

Metl-Span Architectural Flat Wall Panels⁷

22 Ga. Exterior / 26 Ga. Interior Facings

Allowable Positive Load^{1,4,5,6,} (psf) for Two or More Equal Spans

Panel	Design	Suppor	t Span							
Type ²	Criteria ³	4'	5'	6'	7*	8'	9'	10'	11'	12'
2"		90.8	71.3	58.6	49.8	43.2	38.0	33.9	28.5	23.2

37 of 1	178
---------	-----

	Bending & Shear									
	Deflection (L/180)	96.1	73.1	57.9	47.0	38.9	32.4	27.2	23.1	19.7
2.5"	Bending & Shear	106.3	83.1	67.9	57.2	49.3	43.3	38.6	34.8	28.3
2.5	Deflection (L/180)	117.1	89.9	71.7	58.8	49.1	41.7	35.7	30.9	27.0
3"	Bending & Shear	118.2	92.6	75.7	63.8	55.0	48.3	43.0	38.7	33.5
3	Deflection (L/180)	135.2	104.4	83.8	69.2	58.2	49.7	42.9	37.4	32.8
\bigwedge	Bending & Shear	124.8	98.1	80.4	67.8	58.5	51.3	45.6	41.1	37.3
G	Deflection (L/180)	162.2	126.5	102.5	85.3	72.4	62.4	54.4	47.9	42.5
Notes:		Ą	4	6	7	8	~~)	(D	(L	12

1. The Load Span Table above is based on Allowable Stress Design (ASD). For loads calculated based on ASCE 7-10 (LRFD), please refer to section 2.4.1 of ASCE 7-10 for the applicable load combinations using Allowable Stress Design.

2. Based on CF-panel with 22 ga. Architectural Flat exterior and 26 ga. Light Mesa interior face (min Fy = 33 ksi).

- 3. Refer to the allowable connection load chart, for suction loads.
- 4. Allowable positive or suction load is the lowest value of panel bending strength, shear strength, deflection limit and connection strength for each fastener pattern.
- Allowable loads based on panel stress and deflection design criteria are derived from ASTM E72 structural testing and calculated with factor of safety of 2.5 for bending stress, 3.0 for shear stresses and deflection limitation of L/180.
- 6. The structural capacity of the purlins are not considered and must be examined independently.
- 7. Consult Metl-Span for recommendations on panel profile and gauge suitable for thermal stresses.

0	Desiduate		D	Toll Free: 877 585 9969
Company	Products	News	Resources	Phone 972 221 6656
History	Architectural Panels	White Papers	CAD Library	Fax 972 420 9382
Affiliates	Commercial & Industrial	Press Releases	Document Library	1720 Lakepointe Dr. Stel #101
Associations	Cold Storage	Event Calendar	FM Global Requirements	Lewisville TX 75057
Careers	ThermalSafe Fire Resistant	Green Building	Education Courses	
Contact Us	Panel	ENews	Locate a Representative	4: 2016 Metl Span an NCI Building Systems company
	CFR & Roof Systems	New Products	eBinder	All rights reserved
	Metl-Vision and Envelope			fy
	Solution			
	Single-Skin Wall Panels			

 Date 3/1
 38 of 178 Sheet
 of

 Contract
 7431-77

011-2010A

	Calculation N	۱o.
--	---------------	-----

	Subject McMurdo	Revision	Ву	Date	Chk'd	Date
,		-	ÐF			
	Ring Horest					
1		· · · · · · · · · · · · · · · · · · ·				
2	& Check Vertical Wall	wind	61	rdes		
3		and the second second			· · · · · · · · · · · · · · · · · · ·	
4	+ Church Corner Co	lumies	~		· · · · · · · · · · · · · · · · · · ·	
5	A=113422	h	-Yax	12-6	<i>¶</i>	
6	P = (63)(4,26)(9)	Ţ	/	<u> </u>		·····
7			e an cean de come	en	¢	
ð 9	= 2219 #		-/			
10				1		
11	M = 2219 (4.25)	· · · · · · · · · · · · · · · · · · ·		OIN ,	:	
12	Mux		···· • ··· • · • • • • • • • • • • • •	Y	•·····••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·
13	= 9431 #-56 = 113 K-111 P			e Li Li Li L		·····
14		>				
15	Na11= .9 5x			eg	· · · · · · · · · · · · · · · · · · ·	•••••
16	- 9(62)(97)					4
17	=,9(50)(9.2)		67	a		
19	= 414 k-12	(7	= <i>11</i> , 17	9-2016		
20			wo	(33		· · · · · · · · · · · · · · · · · · ·
21	Ree Il. 4 Kips	······································	6. 2	9.2 W	1 1	
22	DL+3L	· · · · · · · · · · · · · · · · · · ·	X	1 1	· · · · · · · · · · · · · · · · · · ·	
23	P11 3181 K183			· · · ·	·····	· · · · · · · · · · · · · · · · · · ·
24				••••••	-	
25	NIOX33	$\langle \cdot \rangle$				·····
26 27	Er + (MVX	$) \leq 1$, 0	:	· · · · · · · · · · · · · · · · · · ·	
28	Zte ~~~~~~			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
29	11.7 . 1131	- 21	<u> </u>	1.6	1BL	
30		19 1				
31		nalization and be non-experienced at the second			T	The second second
32	W-10×30	Column			•	
33	62					
	1 2 3 4 5 6 7 8 9 10 11 12 13 14	15 16 17 18	19 20	21 22 23	24 25 26	27 28 29

.

Engineering Calculation Sheet

Date	3/1	39 of 1 Sheet	78 of
Contra	ct 743	1-77	

011-2010A

ſ٦	CH	ation	Mo	
∿a	ເພ	auon	DAO*	

Subject	No Mer	rdo_					Revisio	n	By		Date		Chk'd		Da	ate
	Ang	Harry		****	**********				PF		,					
	/			<u></u>		_					<u> </u>					
1	. :						:		:					:		
2	check	- ver	fread	G	ian	me (6	- 1 V	65							
3	4 2000	· · · · · · · · · · · · · · · · · · ·	and a construction of the	,			<u> </u>						د			
${}^{4}_{s} = \mathcal{P}_{=}$	54 C	576	6.26	>				: 		(2	, 17	, , , ,				· · · · · · · · · · · · · · · · · · ·
	1972				······				Ÿ.							
7	·····			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						29			· · · · · · •	····· ; · ·	
* · · · · / / =	1972	4.25	>		: 		7 -				پ ر میں	•		·· · · · · · ·	·····	
· · ·	= 838		1 1 1							7						
	= 8,4	n e en este en la elle transle e	the first of the second second				~>	· .			29	•••		:		
2		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	·····		T -			*	••••••••••••••••••••••••••••••••••••••				· · · · · · · · · · · · · · · · · · ·	
3 Mar	江台	チャー	-66	D	Ę			: - 			· · · · · · · · · ·					
5	しらと	482	x U.S	>				5	 		29/	;				
6	an a	un an							4	Ť	······································				:	··· ··· · ·
7		· · ·							9	- 5	7,0)	1			
8	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		• ••• •••••••	· · · · ·			· V ·	:		1				
9					· · · · · · · · · · · · · · · · · · ·	· • • · · · · · ·	<u>\</u>	~ ~ ~	CB	X-IL-	5				· · · · · · · · · · · · · · · · · · ·	···· • • ··· ···
1					·····							·····÷·····				
2	· · · · · · · · · · · · · · · · · · ·										- -	:		،		•
3		····			; ş											;
5 S		· · · · · · · · · · · · · · · · · · ·						· · · <u>·</u> · · · · ·						: 	<u>i</u>	· · · · · · · · · · · · · · · · · · ·
6	···· ··· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1		<u>.</u>				1	···· } ··· ···					· · · · · ·	
7	· · · · · · · · · · · · · · · · · · ·											•				
B	: 	· · ·			: 			: 	•·····•••···	-	•••••••	• • • • •				
9						··a····a ···					ç				······;·· :	
1	· · · · · · · · · · · · · · · · · · ·	· · · · • • • · · · · • • · · · · · •	:	· · · · · · · · · · · · · · · · · · ·			•••••	-				· · · · · · · · · · · · · · · · · · ·			····· • • •	
2	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		,			· · · · · .					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · ·	•• 4••• : •••• 9•
3					: `	-			• •							
1 2	3 4 5 6	578	9 10	11 12	13 14	15	16 1	7 18	19 2	0 21	22	23 24	25	26	27 2	8 29

ţ

Engineering Calculation Sheet

Date 12/15 Sheep of 178 of Contract 7281-77

011-2010A

Calculation	No.

Subject McMirdo	Revision	By	Date	Chk'd	Date
1071/11/19		- 7 - -			
Rump House					
1					
2 Pump House wind	Load	an ann an suiseach a a ann an gan an gan an	· · · · · · · · · · · · · · · · · · ·		
3	n de la companya de l La companya de la comp	U	12		
$V_{1} = (39.2 + 95.7)(13/2)$				1	
$ \begin{array}{c} \mathcal{W} = (39.2 + 45.7)(13/2) \\ \mathcal{W} = (39.2 + 45.7)(13/2) \\ \mathcal{W} = 552 \neq 15t \text{strength} \end{array} $	······································	····		· · · · · · · · · · · · · · · · · · ·	1
, = 552 =16t strengte	- blue 1	,	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
", WW1, - 1, (5502)	<u>.</u>				· · · · · · · · · · · · · · · · · · ·
$ \frac{10}{11} = \frac{1}{331} = \frac{1}{156} = \frac{1}{19} = \frac{1}{$	·····		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	····· · · · · · · · · · · · · · · · ·
= 531 = 136				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		······		· · · · · · · · · · · · · · · · · · ·	
14		····	· · · · · · · · · · · · · · · · · · ·	·····	·····
15	•			· · · ·	i
17					
18	1		1	$\begin{bmatrix} 1 \end{bmatrix}$	
19 CFloor Land	(w	= 33	+/~~		J
21	Plan	V1-			
$w_{WL} = -6(552+2(39.2+35)^{-1})$) Terres	f		(
$\left \left(\frac{1}{2} \right) \right = \left \frac{1}{2} \right = \left 1$	• •				
= 433 #15E	· · · · · · · · · · · · · · · · · · ·	······································		4	
$Z_{26} = + 433(135)$	1		· · · · · · · · · · · · · · · · · · ·		1
17 Floor 5429 #	· · · · · · · · · · · · · · · · · · ·		·····	· · · ·	· · · · · · · · · · · · · · · · · · ·
29			.	· • · · · · · · · · · · · · · · · · · ·	
30	N N		· · · · · · · · · · · · · · · · · · ·	17 N	
31	4 70	· · · · · · · · · · · · · · · · · · ·	· · · · : · · · · · · · · · · · · · · ·	44	
32	4 4	• ••••••		N N	▶ : 8
1 Z 3 4 5 6 7 8 9 10 11 12 13 14	15 16 17 18	8 19 20	21 22 23	24 25 26	27 28 29

Date 3/2 Sheet of 178 of 7481-72 Contract

011-2010A

Calculation No.

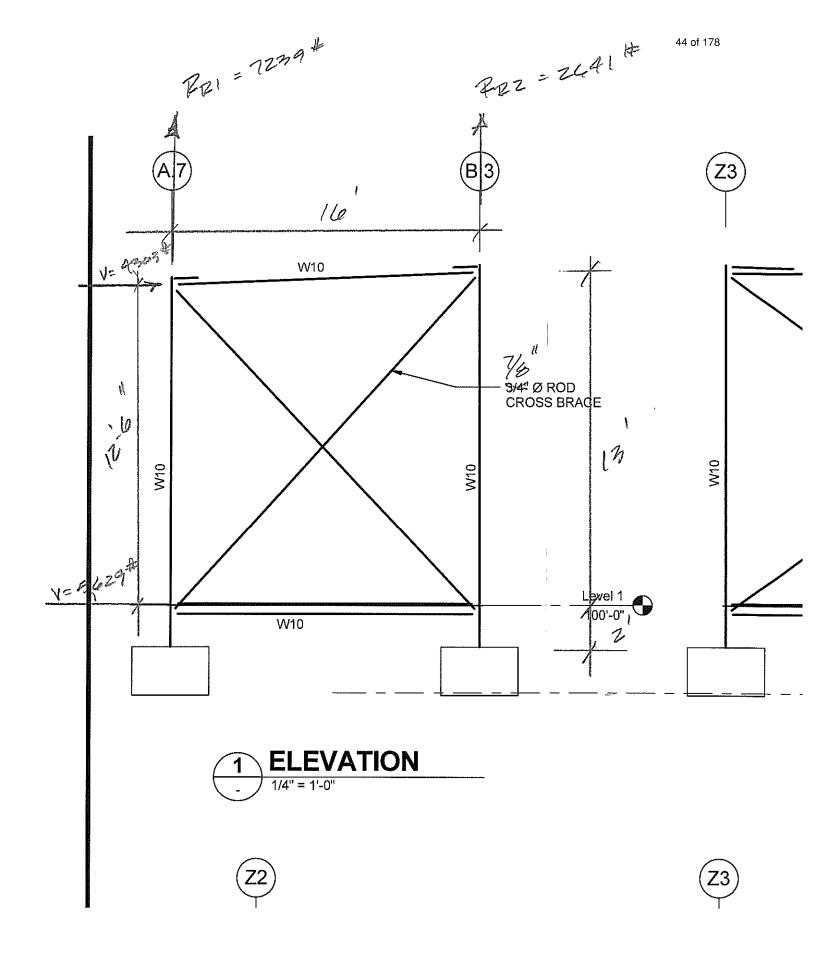
Me Mendo utilities Subject Revision Date Chk'd By Date PE PumpHouse Chuck Kert Augle Pracine 2 59=33.1 3 4 01303th 1- 4303 # 5 6 F= 4303 7 1 1303 H ĺ2 Sm/ 337) 8 9 = 7766# 10 11 A= 1.44 12 12 13 Fy = 34 trusile wizidins 14 15 Pen= Fry Ag Ty = GELAI 72=1.67 16 2=.6 17 18 Fall = 31 K > 7.5 E 19 20 21 transile Euplane 22 23 Eas Jus Ac 2=20 24 20 25 26 = 25,2 27.52 27 28 Ac= , 4 (1.47) 29 me L3X3X14 Eurion only time 30 31 32 33 10 11 12 13 15 16 17 25 1 14 18 19 20 21 22 23 24 26 27 28 29

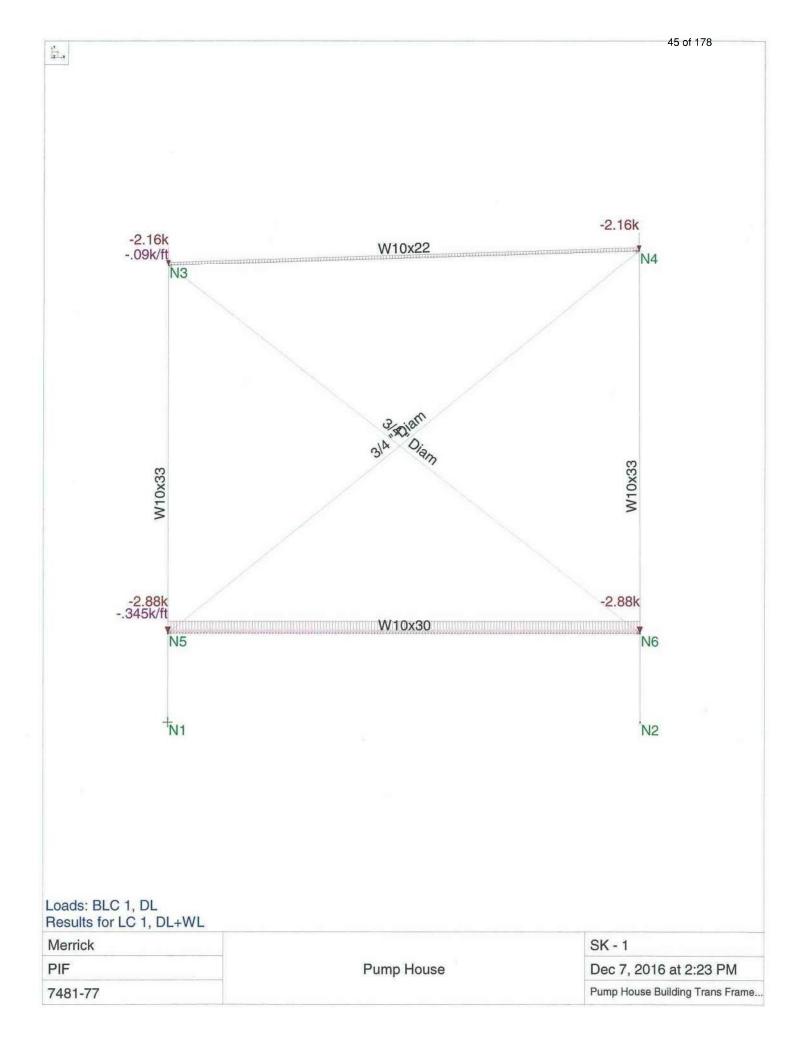
011-2010A

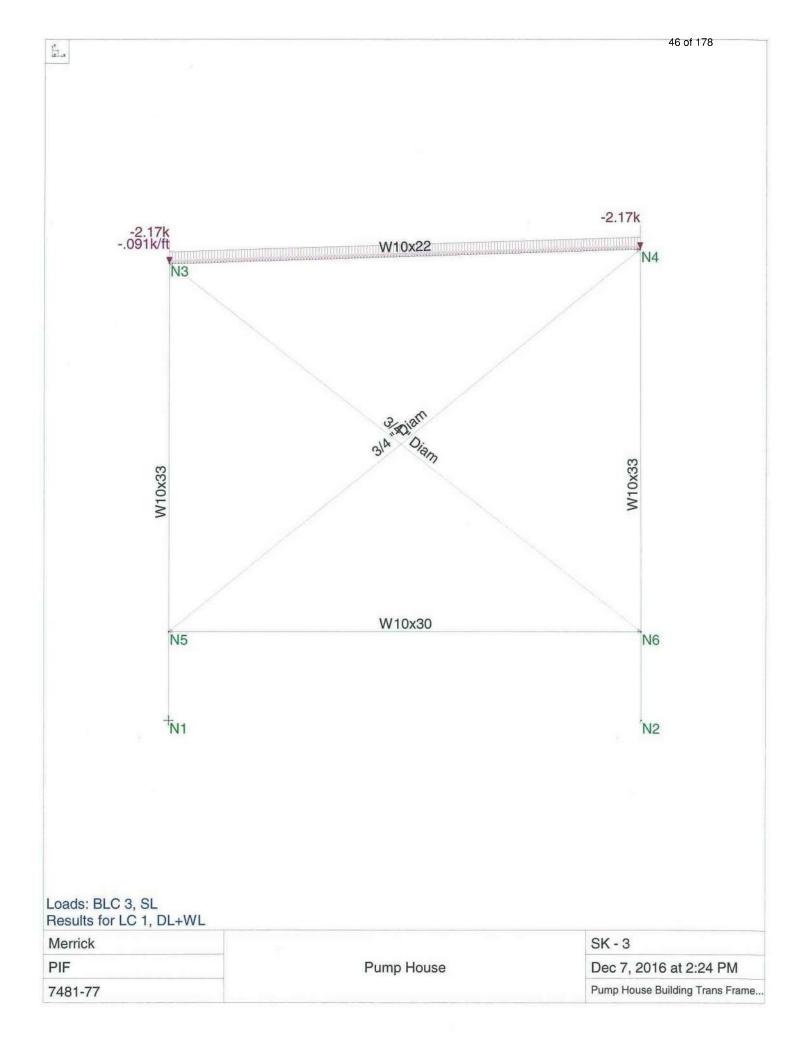
Date 12/15 Sheet of 178 of Contract 7481-7-7

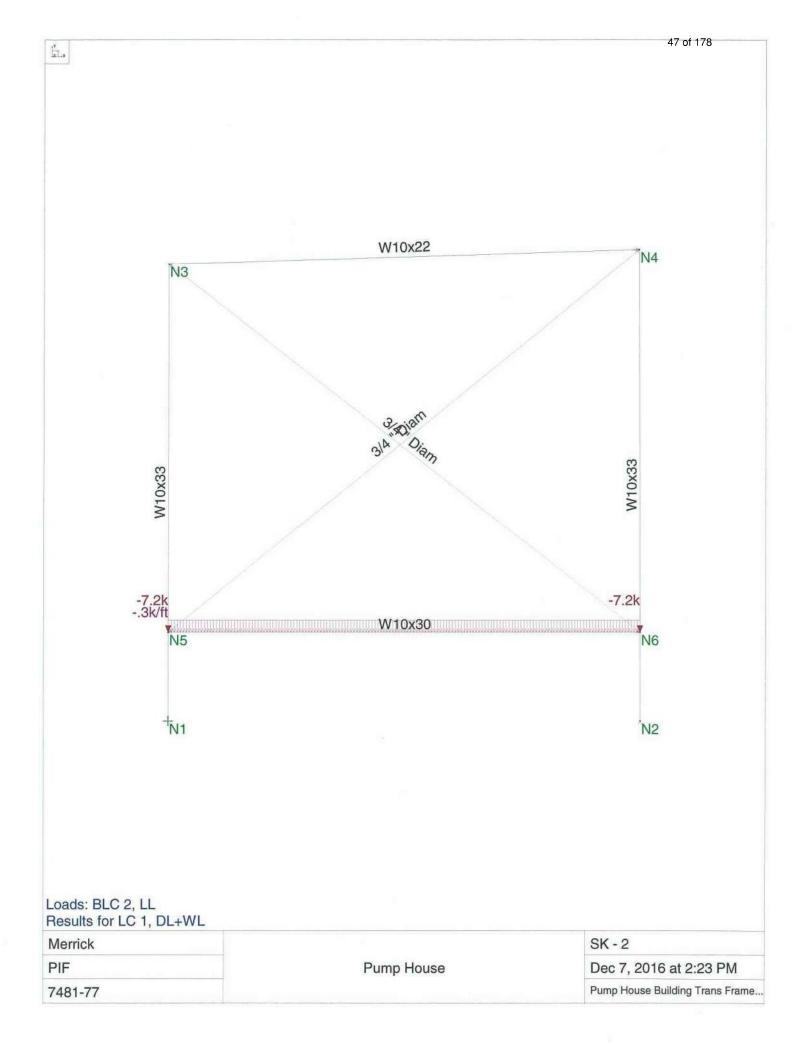
Contract 1981 -Calculation No.

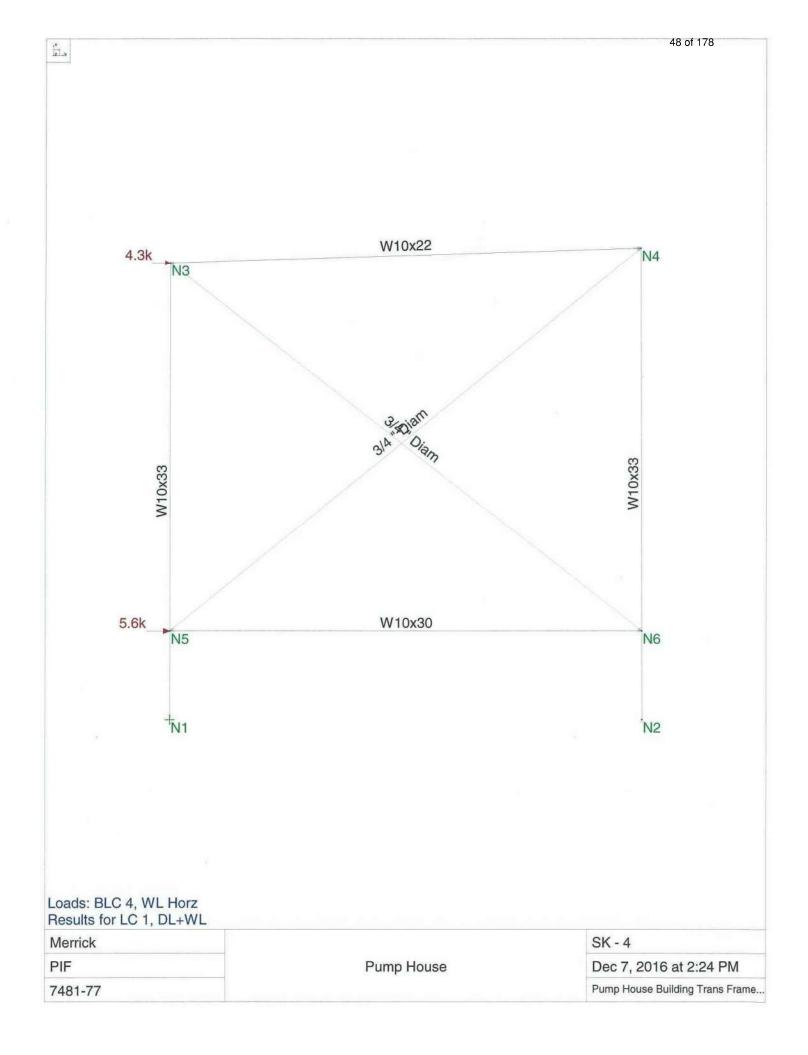
Mc Murdo vilities Revision Date Chk'd Subject By Date FF 83.6 Post L3. Post Pr Load at Rest transv 2 з EE = 16 (24/2) 54.2 (3.3/2) + PSS 5 63,4(7,4)(7,4/2+3,3)+ 6 6 wor those 7 63.6 (2.4) (7.42+7.4+3.3) 8 - 16 REZ , Pari 9 = 7239# 10 11 12 13 14 15 FIDG REDU (Euch 1.4 1.3 16 EDL = 30 (187(14/2) 1/2 3,3 17 18 = 2160# 19 Enc = 30.2/ (2140) 20 21 = 2174 # 22 23 W=1 = 30 (3) = 90 #/56 24 25 25 Was = 91 #146 27 28 29 30 31 32 33 22 27 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 28 29 1 2

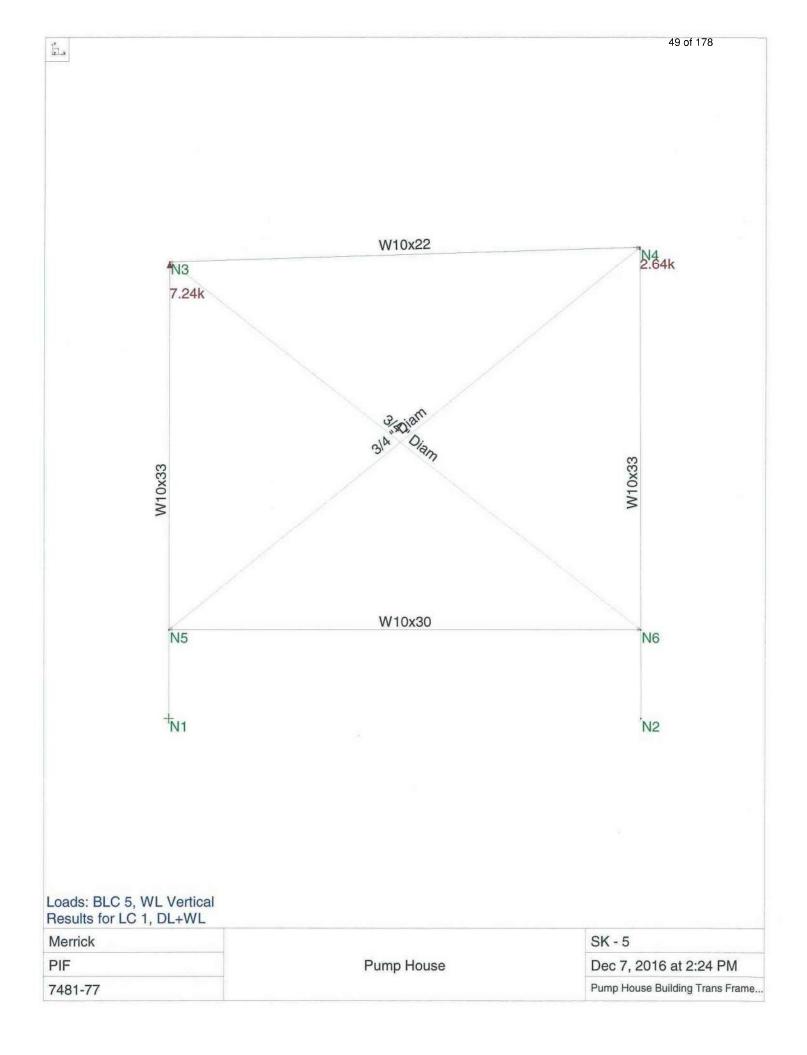


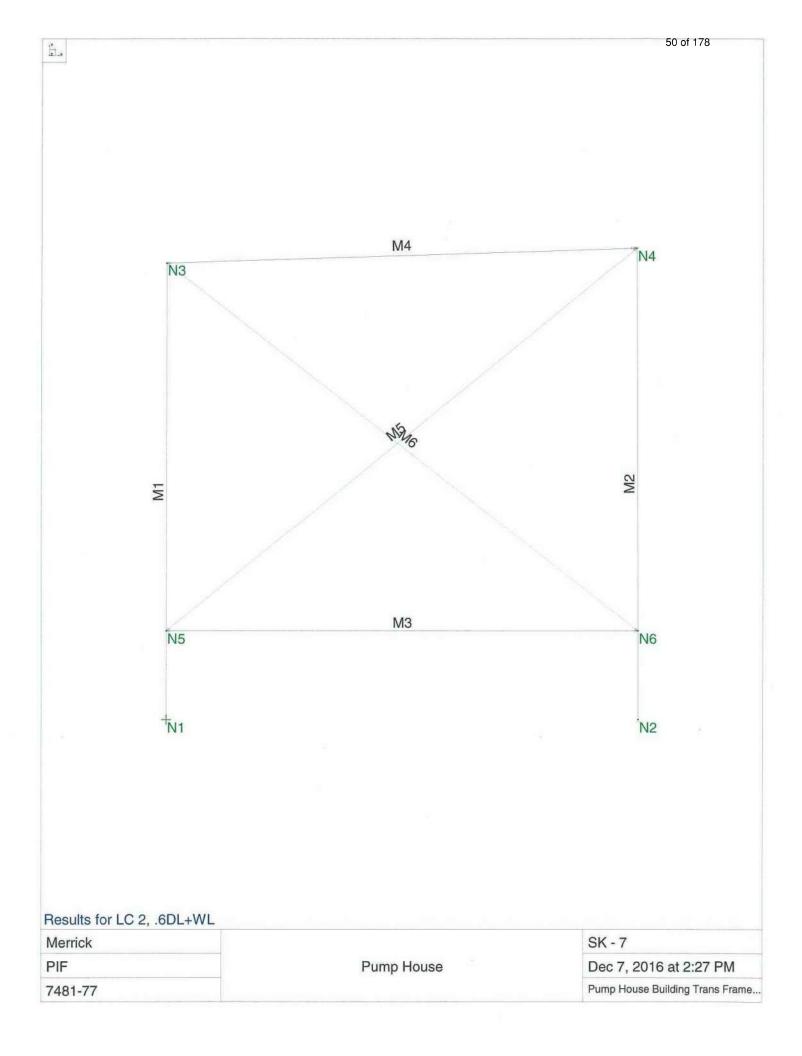

011-2010A

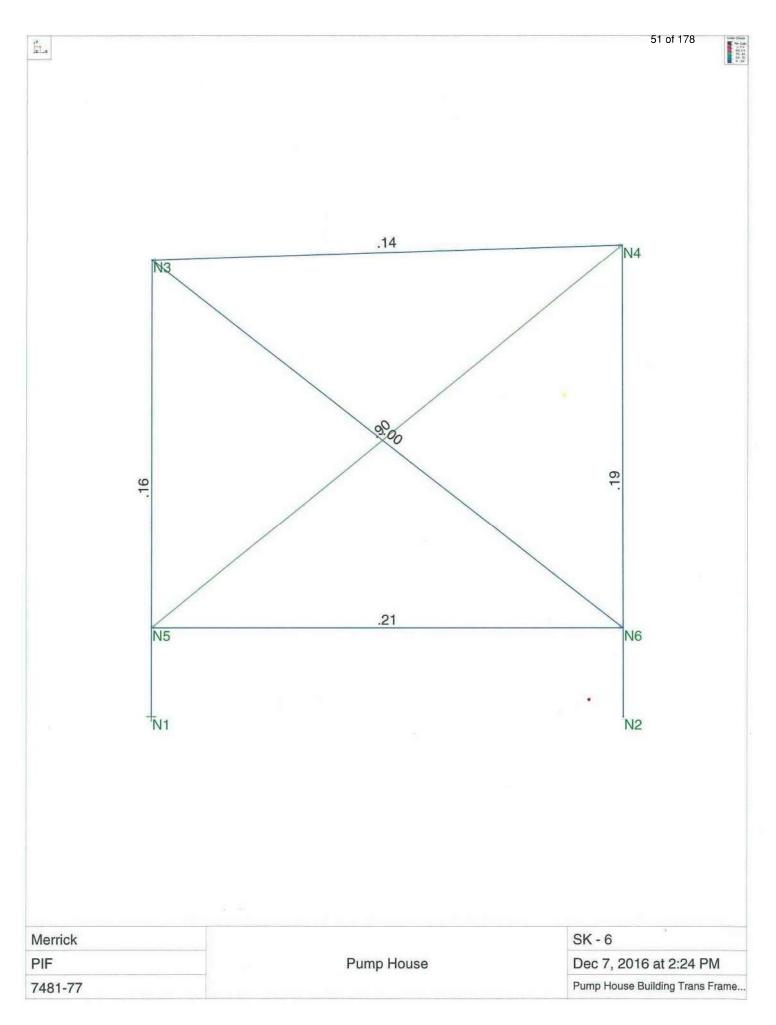

Date /2/15 sheet of 178 of

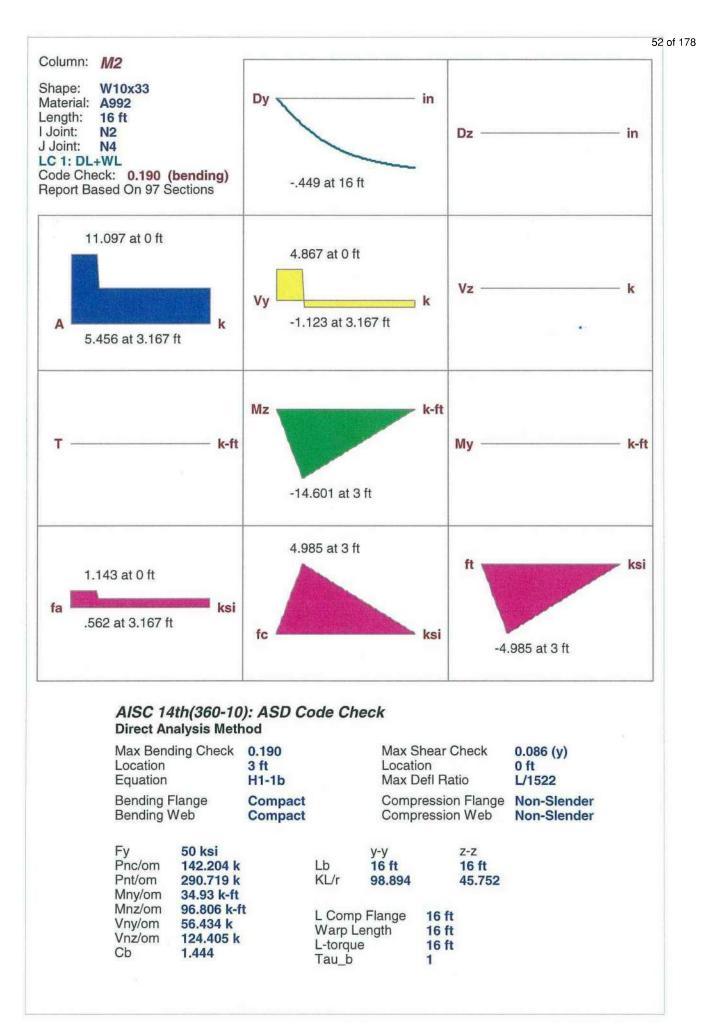

Contract 7481-77

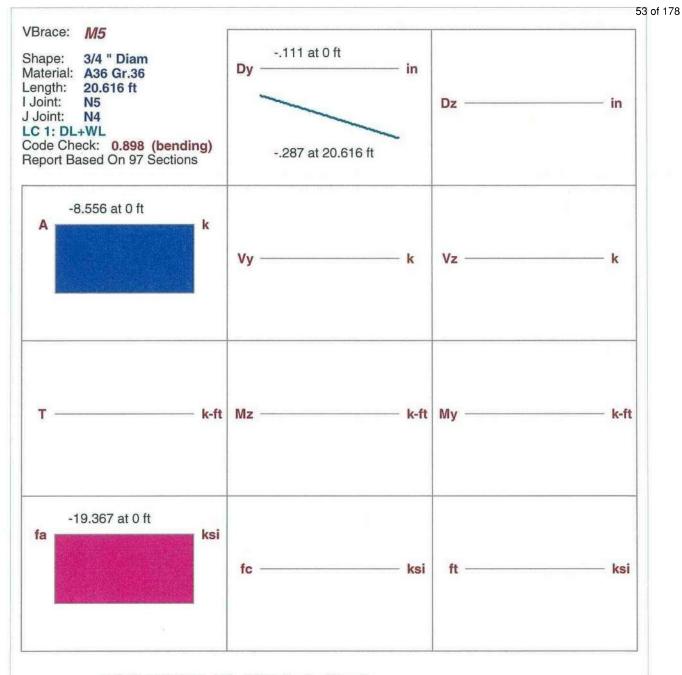

Calculation No Ne Mordo ufilitions Revision Subject Βу Date Chk'd Date PF EFI- EFE (Floor) R = 40/30 (2(00) = 2880 # F=u = 100/40 (2820) = 1200 # W = 40(3) + 15(15) \$00 m Floor wall - 346 4/5-6-10 = 100(3) FIL = 300 + 166 Rec following Frint out for Frame transh Columns will Be Wlox33 FLOOR BAL = WIDX30 Rest Bin = 1010×30 = 7/4" & Tod Bracing

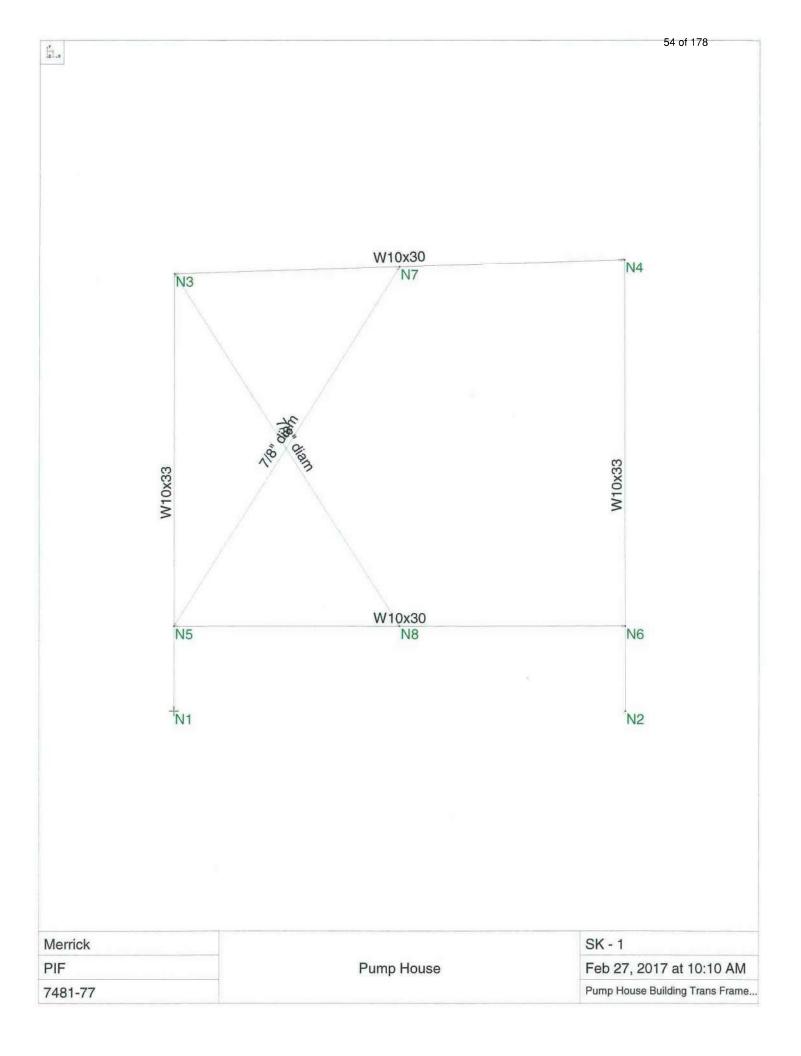


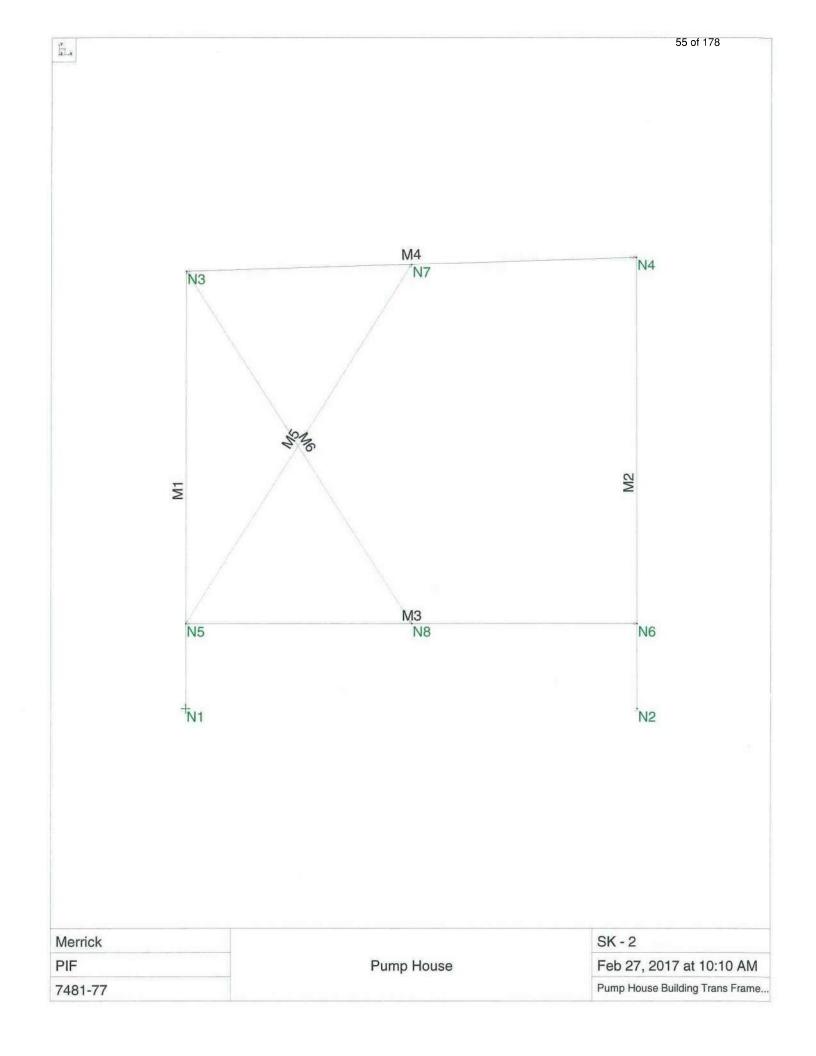


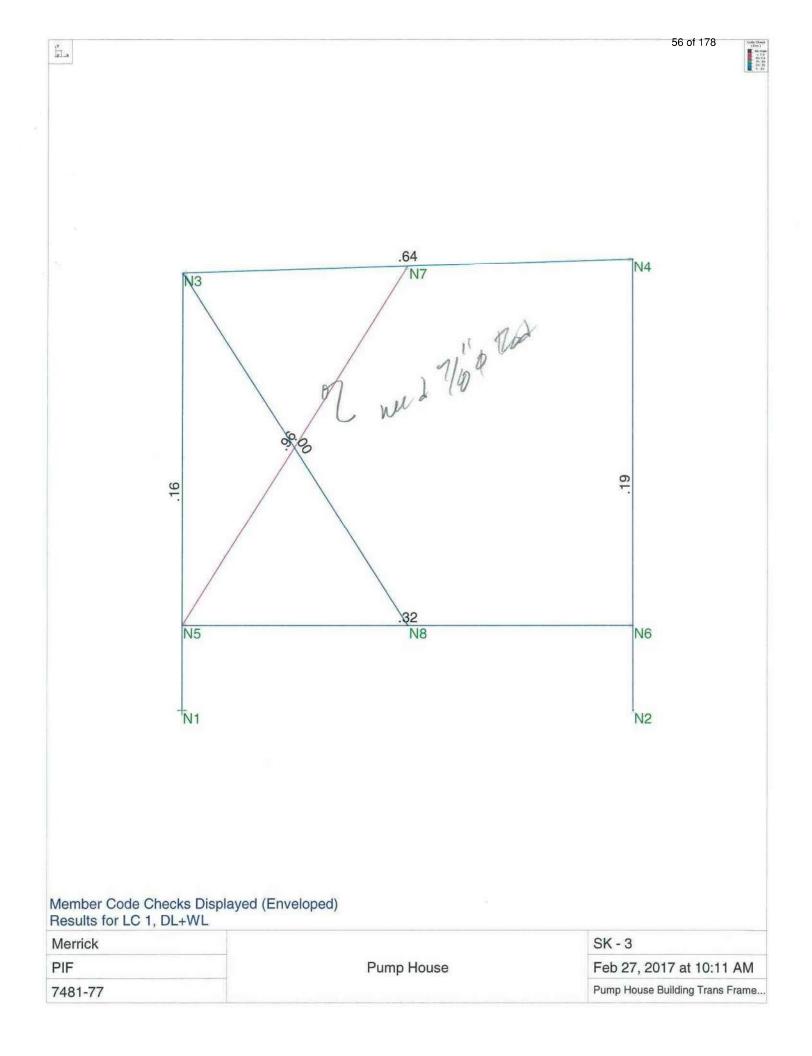


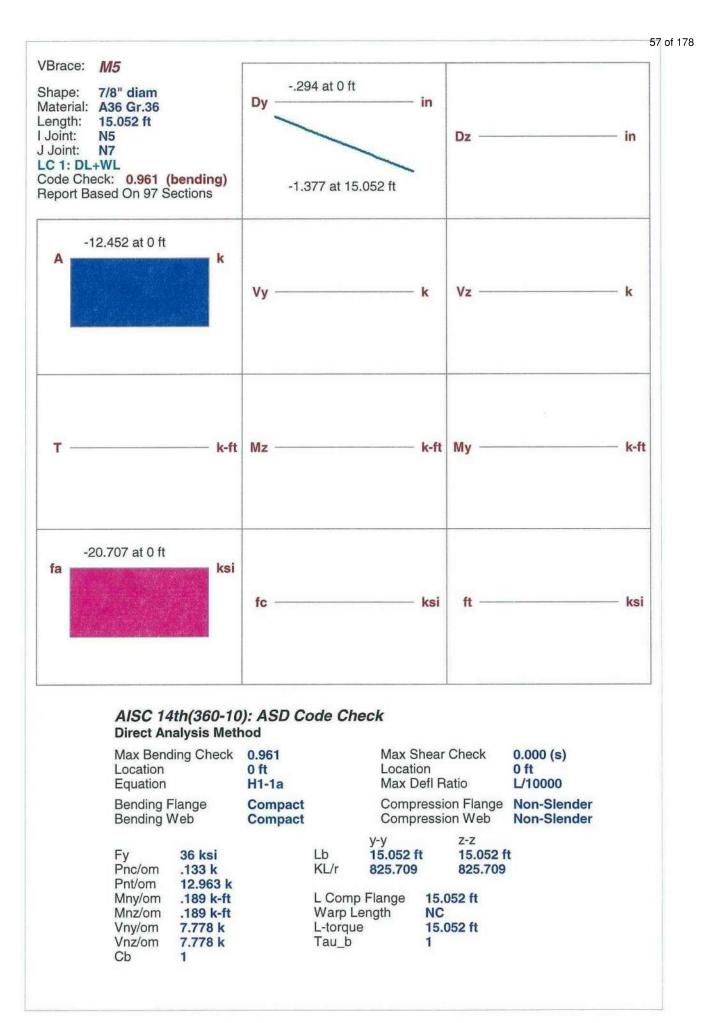


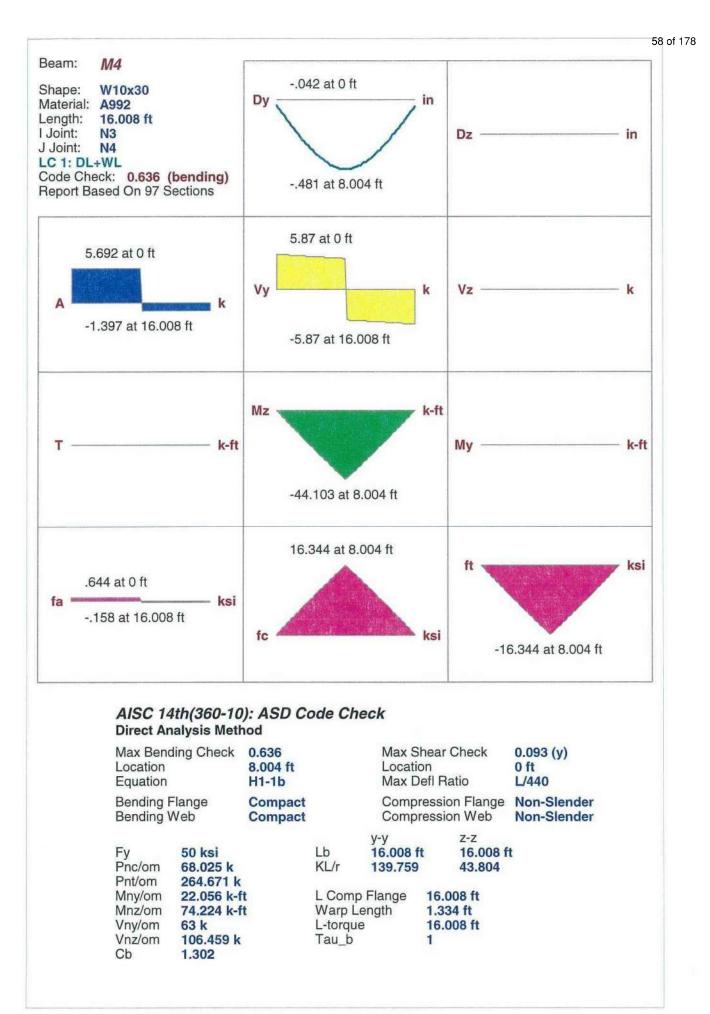









AISC 14th(360-10): ASD Code Check Direct Analysis Method


Max Bend Location Equation	ding Check	0.898 0 ft H1-1a		Locati	Shear Check on Defl Ratio	0.000 (s) 0 ft L/10000
Bending Flange Bending Web		Compact Compact			ression Flange ression Web	Non-Slender Non-Slender
Fy 36 ksi Pnc/om .038 k Pnt/om 9.524 k Mny/om .119 k-ft		Lb KL/r	y-y 20.616 (1319.39			
Mnz/om Vny/om Vnz/om Cb	.119 k-ft 5.714 k 5.714 k 1		L Comp Warp Lo L-torque Tau_b		20.616 ft NC 20.616 ft 1	

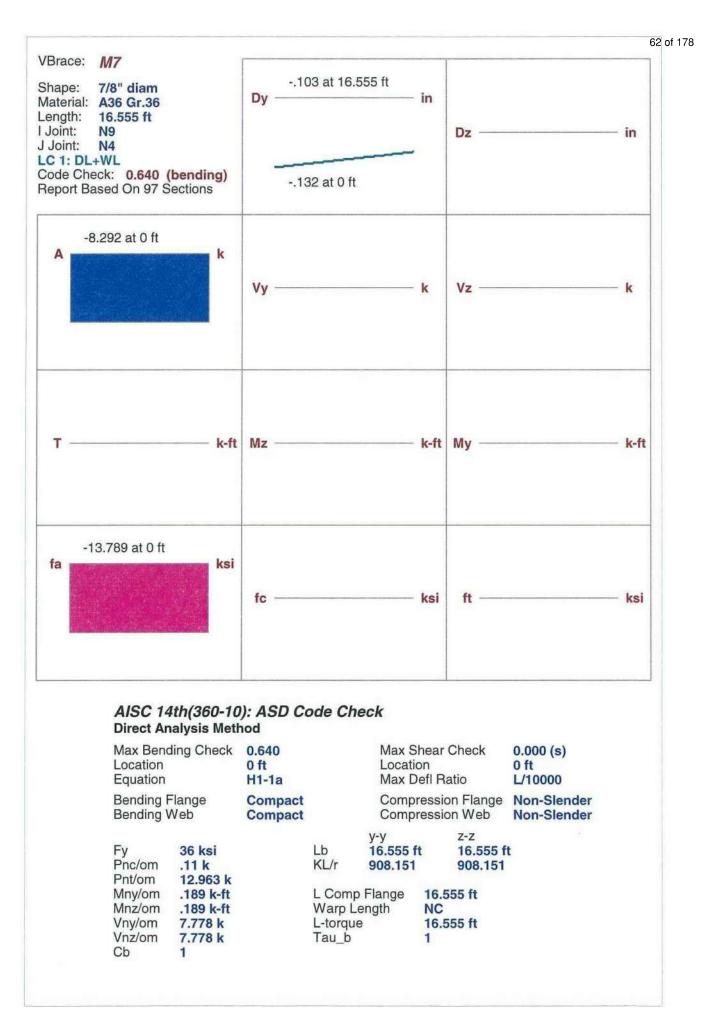
Date	3/4	59 of 1 Sheet	78 of
Contra	ict 74	281-77	7

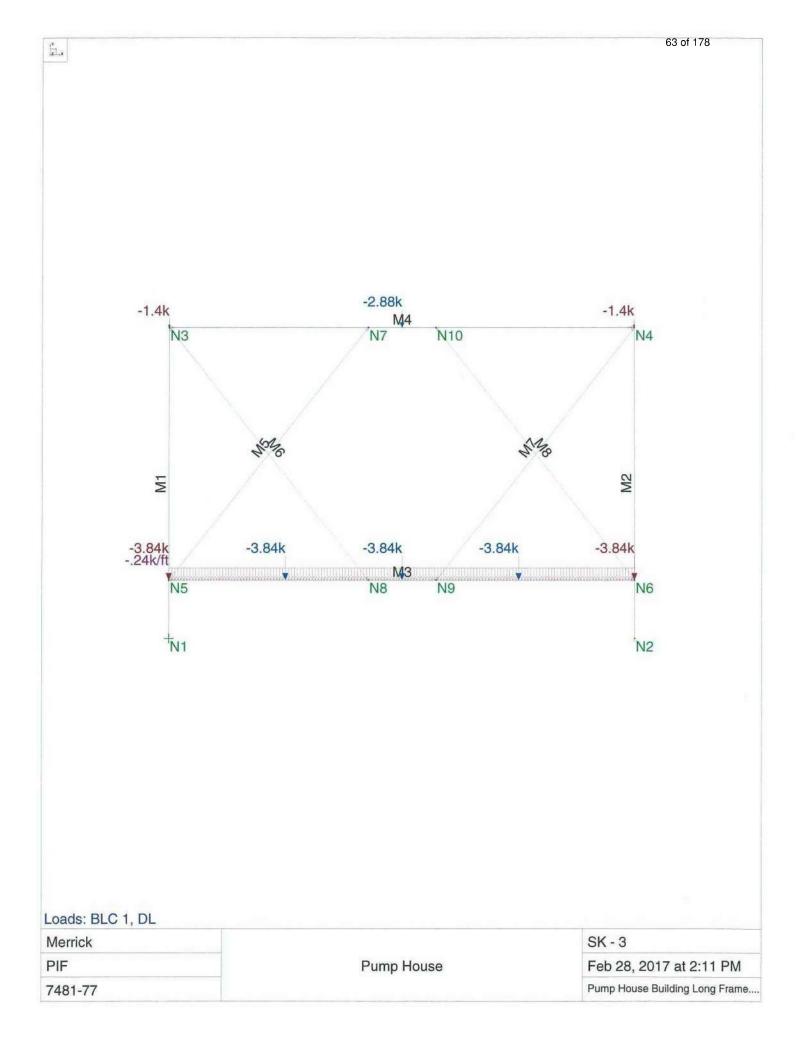
011-2010A

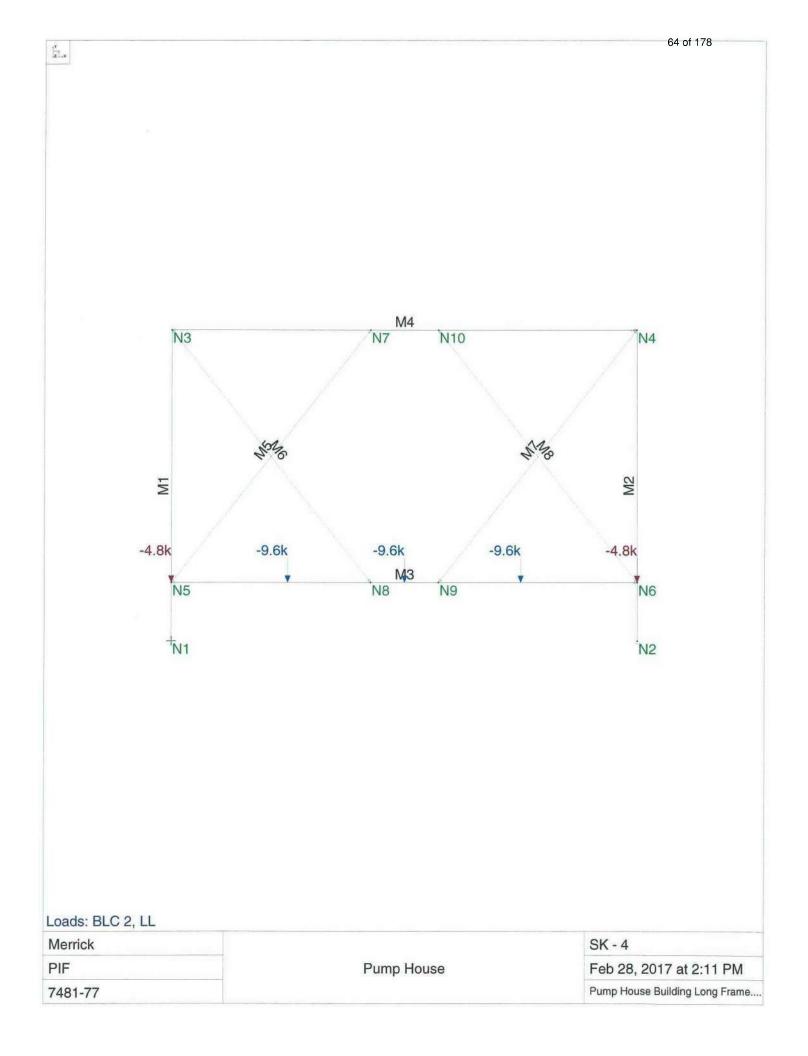
Calculation No.

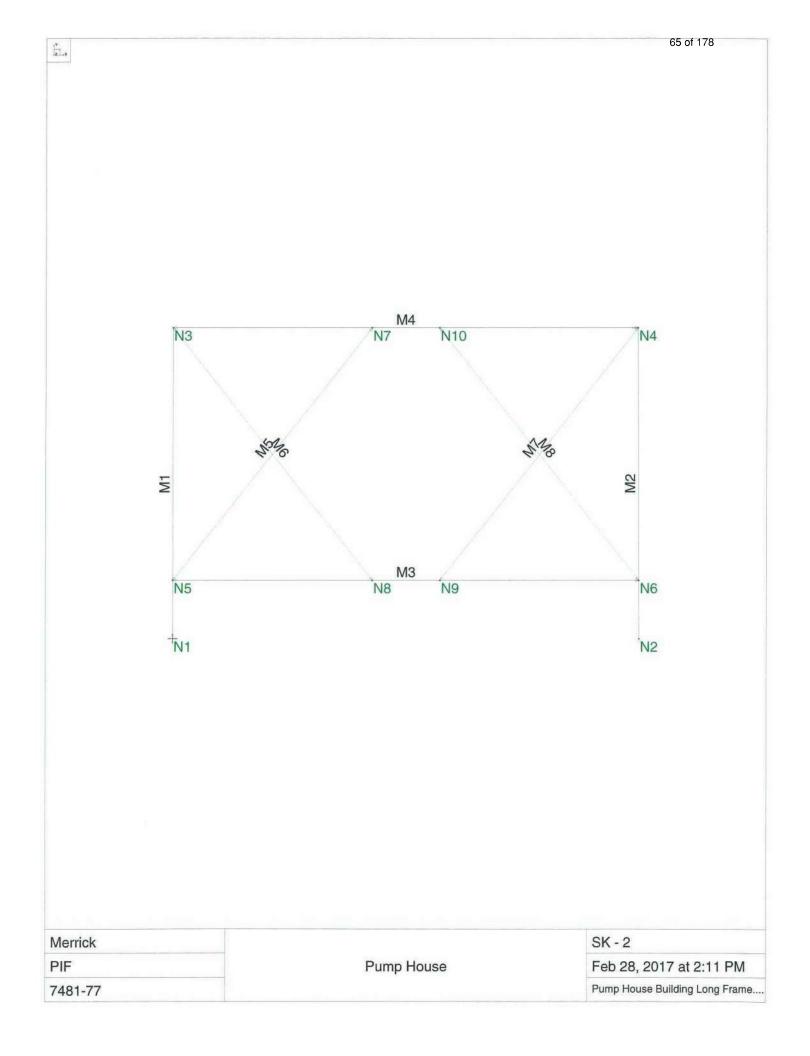
Subject Mr Mardo istilities Revision Date Chk'd By Date Arm po Horse + Long Frame PELZ Reve FELI + ica V, PEL1 Epu= 12 (30) (1/2) = 2,8864 Re P36 = 2,880 # P l 2 Pul = 16 (75.5) (12) (12) (12) = 4346 # up Vz_ - Wail PRZ Por= 2,880/2 = 1200 # FZ Fzz= 3390/2 + 15(16)(14/2) Bac = lacest Pw1 = 9766/2 Eu= 9,600/2 = 4,800 # 2183# PI 尼山: 40(に)(2)=3,340世 ELL = 100(12)(1/2) = 9,200# 10 = 15(16) = 240 #/56

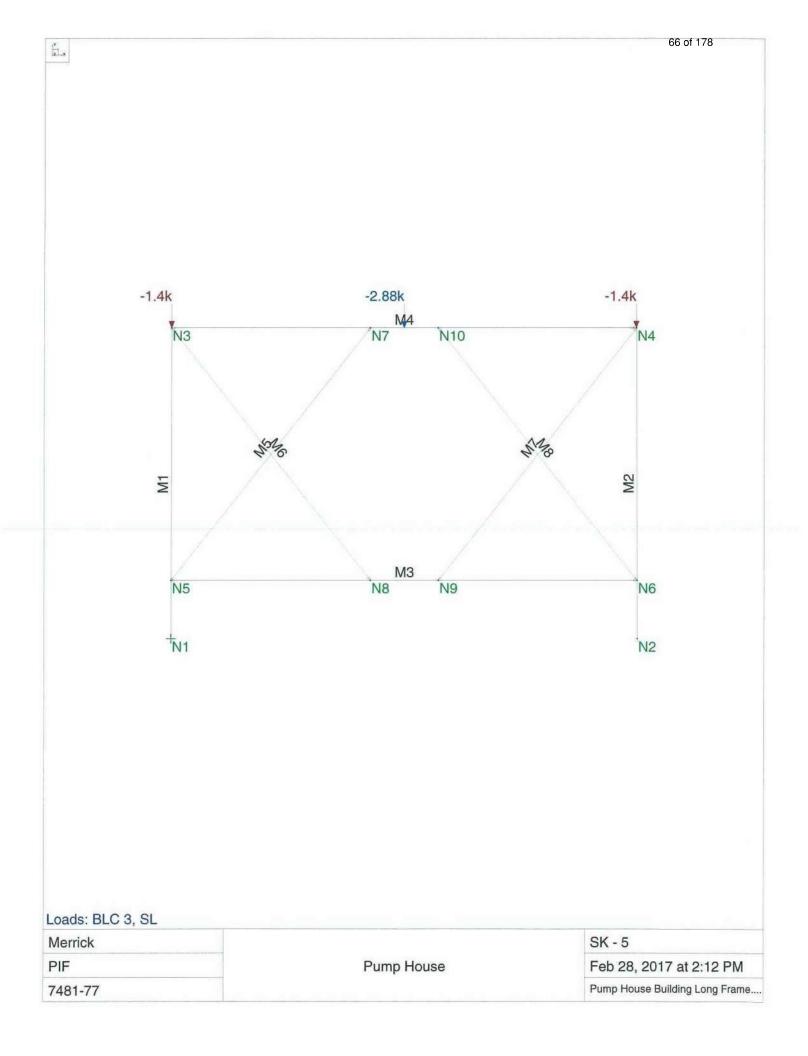


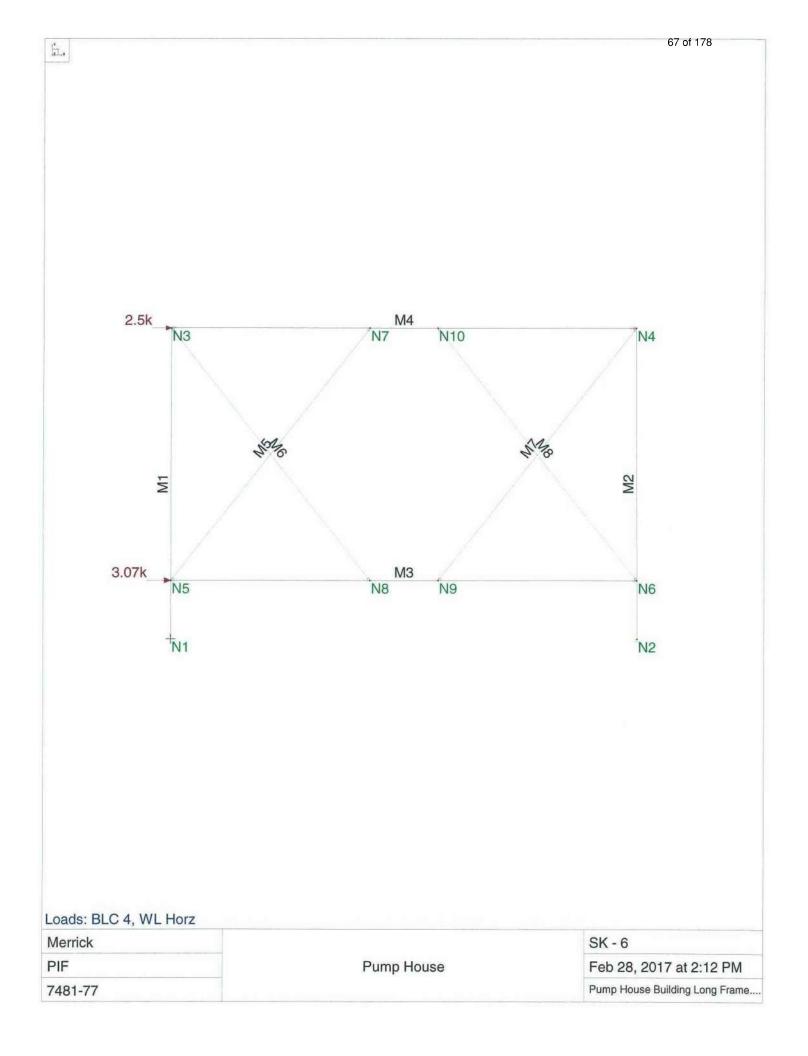

011-2010A

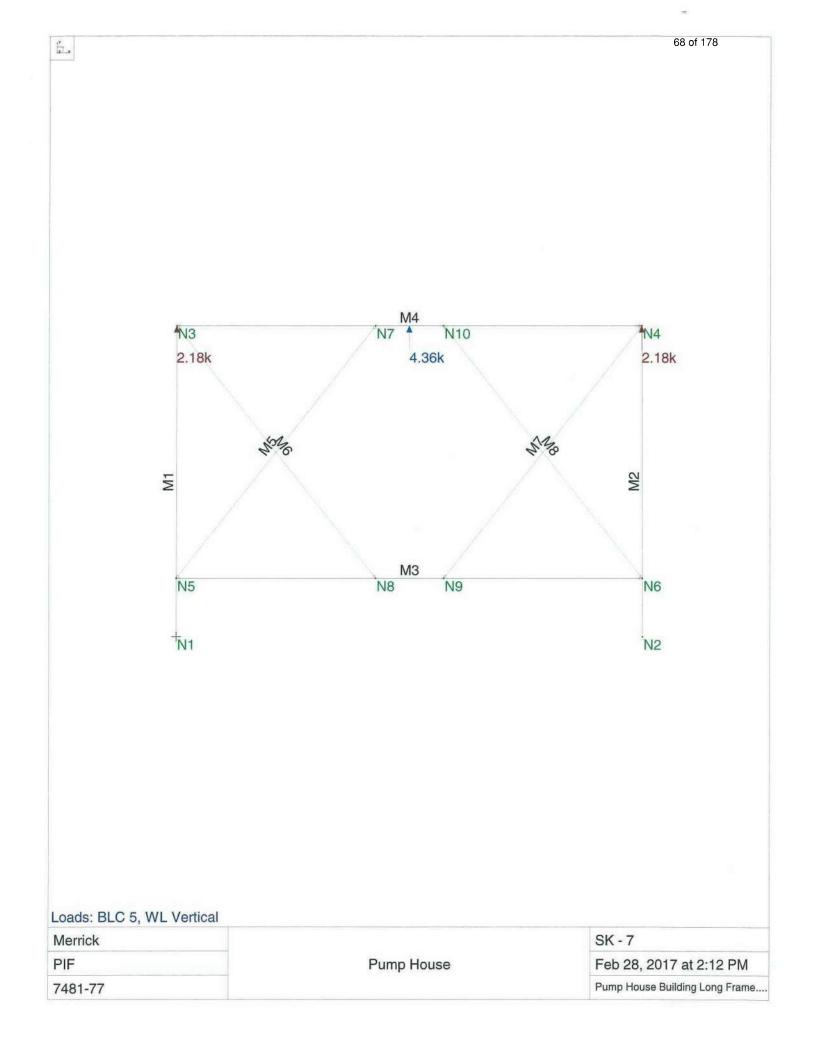

	711	60 of 17	8
Date	916	Sheet	of

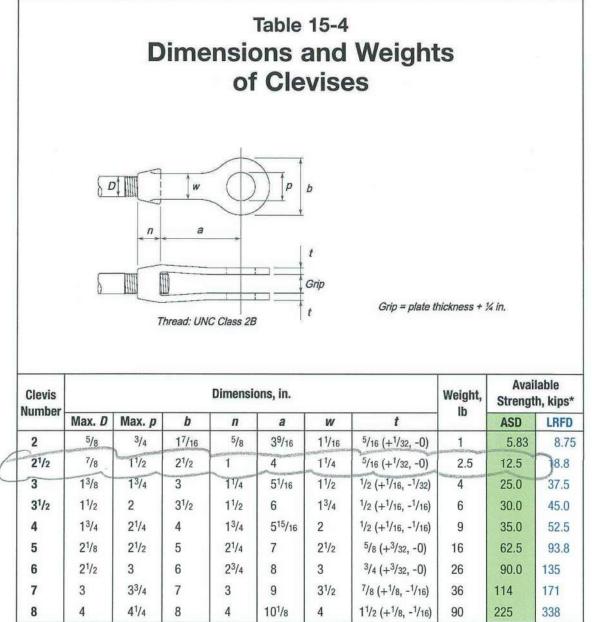

Contract 7481-77


Calculation No. Mc Mordo stititos Subject Revision Date Chk'd Date By -pump House V1 - 80(14/2) (13/2) (.6) /1000 З = 2.5 K V2 = 60 (14/2) (13/2 + 3/2) (16)/1000 = 3,07 14 No ? Esd for Bracera sec Following Port DAL









Date 227 Sheef of 178 of Contract 7487-77

011-2010A

Calculation No.

Memberdo voilidias Subject Revision Ву Date Chk'd Date PF Rup House Check transion Ford Connection E = 12,5 Kig= ? alloughte USE 2/2 Clauis up 1"\$ Pin Par = 12,5% = 12,5 K -see Fallowing trutost Tornbuckle Capacity Aver 7/6 \$ Esd - R.S KIPS Turnbuckle Capacity = 12 tip DCE = 12.9/2 = 1.04 with in 4% /12 GK See Following print out

Notes:

Weights and dimensions of clevises are typical; products of all suppliers are essentially similar. User shall verify with the manufacturer that product meets available strength specifications above.

* Tabulated available strengths are based on $\phi = 0.50$, $\Omega = 3.00$. Strength at service load corresponds to a 3:1 safety factor using maximum pin diameter.

Copyright American Institute of Steel Construction

Provided by IHS under license with AISC AMERICAN INSTITUTE C Licensee=Merrick and Co/3879400001, User=finley, patrick Not for Resale, 05/08/2012 10:18:43 MDT

Г

٦

	Table 15-5 Clevis Numbers Compatible with Various Rods and Pins																	
Dia. of	Diameter of Pin, in.																	
Tap, in.	1/2	⁵ /8	³ / ₄	7/ ₈	$\langle 1 \rangle$	1 ¹ /4	1 ¹ /2	1 ³ /4	2	2 ¹ /4	2 ¹ / ₂	2 ³ /4	3	3 ¹ /4	3 ¹ /2	3 ³ /4	4	4¹/
³ /8	2	2	2		(
1/2	2	2	2		<u>}</u>)												
⁵ /8	2	2	2	2 ¹ /2	2 ¹ / ₂	2 ¹ /2	2 ¹ /2											
3/4			21/2	21/2	2 ¹ /2	2 ¹ /2	2 ¹ /2											
7/8				21/2	21/2	2 ¹ /2	2 ¹ /2	3										
1					3	3	3	3										
1 ¹ /8					3	3	3	3	3 ¹ /2									
1 ¹ /4					3	3	3	3	3 ¹ /2									
1 ³ /8						3	3	3 ¹ /2	3 ¹ /2	4								
1 ¹ /2						3 ¹ /2	3 ¹ /2	4	4	5								
1 ⁵ /8						4	4	4	5	5	5							
1 ³ /4							4	5	5	5	5							
1 ⁷ /8							5	5	5	5	5							
2							5	5	5	5	5	6	6					
2 ¹ /8								5	5	6	6	6	6					
2 ¹ /4									6	6	6	6	6	7	7			
2 ³ /8						1			6	6	6	6	7	7	7	7		
2 ¹ / ₂									6	6	6	7	7	7	7	7		
2 ⁵ /8											7	7	7	7	7	8		
2 ³ /4											7	7	7	7	8	8		
2 ⁷ /8											7	8	8	8	8	8	8	8
3											7	8	8	8	8	8	8	8
3 ¹ /8												8	8	8	8	8	8	8
3 ¹ /4												8	8	8	8	8	8	
3 ³ /8												8	8	8	8	8	8	8
3 ¹ /2													8	8	8	8	8	{
3 ⁵ /8													8	8	8	8	8	
33/4													8	8	8	8	8	
3 ⁷ /8														8	8	8		
4														8	8			

Notes:

Tabular values assume that the net area of the clevis through the pin hole is greater than or equal to 125% of the net area of the rod, and is applicable to round rods without upset ends. For other net area ratios, the required clevis size may be calculated by referring to the dimensions tabulated in Tables 15-4 and 7-17.

٦

Din	nei	nsic	_		n h		jhts	n g	Tu	rnb	uc	kles	6
		Din	nensions	s, in.			Weight	t (lb) foi	Length	a, in.		Avai	lable
Diameter <i>D</i> , in.	а	п	с	е	g	6	9	12	18	24	26	Strengt ASD R_n/Ω^*	th, kips LRFD ϕR_n^*
3/8	6	9/16	71/8	9/16	11/32	0.42						2.00	3.00
1/2 5/8 3/4	6 6 6	25/32 15/16 11/16	7 ⁹ /16 7 ⁷ /8 8 ¹ /8	¹¹ /16 ¹³ /16 ¹⁵ /16	1 ⁵ /16 1 ¹ /2 1 ²³ /32	And and a subscription of the local diversion	0.90 1.35 1.84	2.35	2.43 3.06	4.25		3.67 5.83 8.67	5.50 8.75]13.0
C7/8	6	15/16	85/8	13/32	17/8	1.85	_	3.02	4.20	5.43		12.0	18.0
1 1 ¹ /8 1 ¹ /4 1 ³ /8	6 6 6	1 ⁷ /16 1 ⁹ /16 1 ⁹ /16 1 ¹³ /16	8 ⁷ /8 9 ¹ /8 9 ¹ /8 9 ⁵ /8	1 ⁹ / ₃₂ 1 ¹³ / ₃₂ 1 ⁹ / ₁₆ 1 ¹¹ / ₁₆	2 ¹ / ₃₂ 2 ⁹ / ₃₂ 2 ¹⁷ / ₃₂ 2 ³ / ₄	2.60 4.06 4.00 6.15		4.02 4.70 6.49	4.40 6.10 7.13	6.85 11.3	10.0 13.1	15.5 19.3 25.3 29.0	23.3 29.0 38.0 43.5
1 ¹ /2 1 ⁵ /8 1 ³ /4 1 ⁷ /8	6 6 6	1 ⁷ /8 2 ¹ /2 2 ¹ /2 2 ¹³ /16	9 ³ /4 11 11 11 ⁵ /8	1 ²⁷ /32 1 ³¹ /32 2 ¹ /8 2 ³ /8	3 ¹ / ₃₂ 3 ⁹ / ₃₂ 3 ⁹ / ₁₆ 4	6.15 9.80 9.80 14.0		9.70 15.3 15.3	9.13 16.0	16.8 19.5	19.4	35.0 40.9 47.2 62.0	52.5 61.3 70.8 93.0
2 2 ¹ /4	6 6	2 ¹³ /16 3 ⁵ /16	11 ⁵ /8 12 ⁵ /8	2 ³ /8 2 ¹¹ /16	4 4 ⁵ /8	14.0 19.6		15.3 30.9		27.5 43.5		62.0 80.0	93.0 120
2 ¹ /2 2 ³ /4	6 6	3 ³ /4 4 ³ /16	13 ¹ /2 14 ³ /8	3 3 ¹ /4	5 5 ⁵ /8	23.3 31.5		30.9		42.4 54.0		100 125	150 188
3 3 ¹ /4	6 6	4 ⁵ / ₁₆ 5 ⁷ / ₁₆	14 ⁵ /8 16 ⁷ /8	3 ⁵ /8 3 ⁷ /8	6 ¹ /8 6 ³ /4	39.5 60.5		79.5				161 203	242 305
3 ¹ /2 3 ³ /4	6 6	5 ⁷ /16 6	16 ⁷ /8 18	3 ⁷ /8 4 ⁵ /8	6 ³ /4 8 ¹ /2	60.5 95.0	70.0	79.5				203 280	305 420
4 4 ¹ /4	6 9	6 6 ³ /4	18 22 ¹ /2	4 ⁵ /8 5 ¹ /4	8 ¹ /2 9 ³ /4	95.0	152					280 390	420 585
4 ¹ /2 4 ³ /4	9 9	6 ³ /4 6 ³ /4	22 ¹ /2 22 ¹ /2	5 ¹ /4 5 ¹ /4	9 ³ /4 9 ³ /4		152 152					390 390	585 585
5	9	71/2	24	6	10		200					491	737

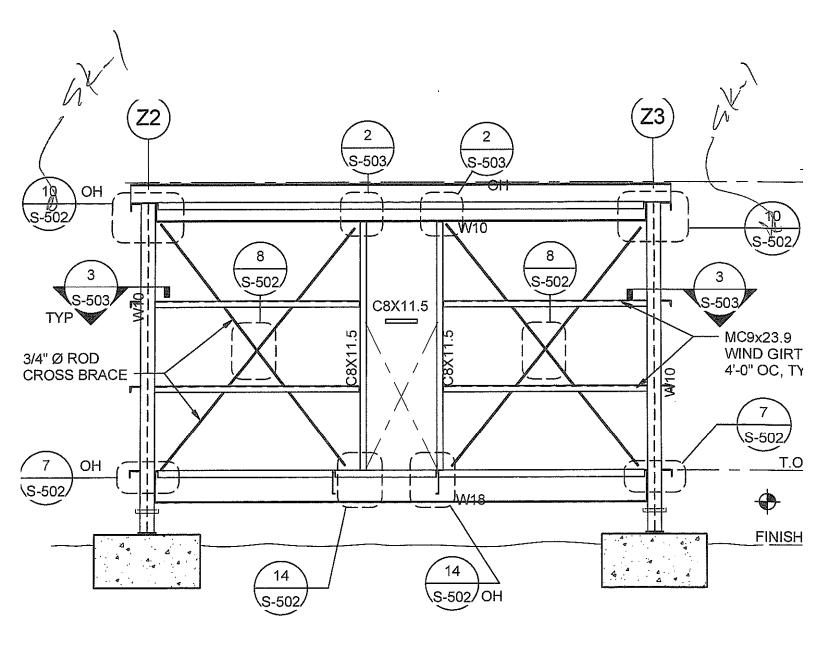
Weights and dimensions of turnbuckles are typical; products of all suppliers are essentially similar. Users shall verify with the manufacturer that product meets strength specifications above. * Tabulated available strengths are based on $\phi = 0.50$, $\Omega = 3.00$.

Date 12/15 Sheza of 178 of <u>Contract</u> 7081-27

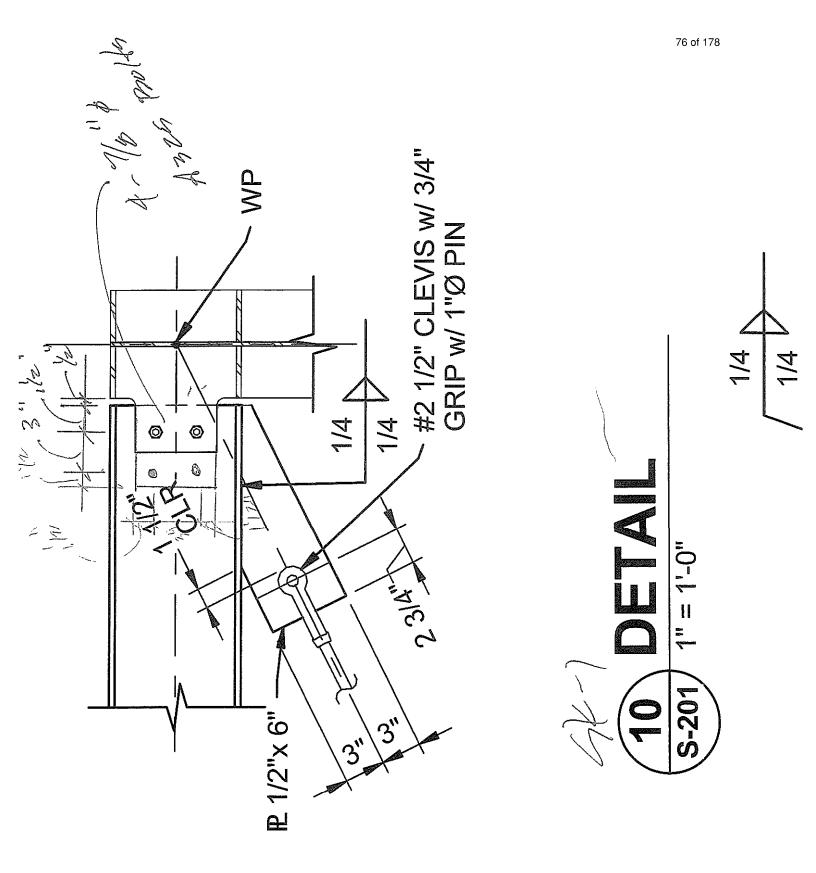
011-2010A

Calculation No.

McMirdo 1stilities Subject Revision Bу Date Chk'd Date PF -Rome House 5. Be Connection Rate for Clevis 2 3 Rail 2.12 4 5 6 7 trinx6 8 Tension 9 10 P/2= Fy (Ag) Ju = 36 Kest 11 12 2= 1.67 = 34(-5)(6) 13 14 15 = 69.7 E > 12.9 E OE 16 17 FL = 58 KSI UAR R/2 18 The Eg de XL' Aur 19 $= \frac{2}{2} \left(\frac{(-5)(6-1-1/8)}{2} \right) \frac{5}{2} = \frac{2}{2}, 0$ 20 Grossiet to 21 Clevis 22 = 37.5K > 12.5 - 2- 12-12 23 24 25 Shear Egstons 26 Fuz = . (15) (1405) 52.=2.0 52 = . (68)(265)(1+12) = . (98)(265)(1+12) 27 28 29 30 ZUIL & >12.56 OK 31 32 33 10 11 12 13 14 15 25 26 27 28


Sheet 74 of	178 _f
SHEEL	

011-2010A


Contract	7481-	77
Calculation	No.	

Date

Subject Ma Murda	Revision	By	Date	Chk'd	Date
		- P#-			
Utilitie 5					
	·····			-	
······					
\mathbb{P}	·····			AL	× ··· ··· · · · · · · ·
Runp Horas Brace Con	nee \$100			DL the	· · · · · · · · · · · · · · · · · · ·
	·····		a-	Zvu/	
DL+96 = 3.56 K				CVN/	31X
00776 - 3.85	: 				
	n an the second s	n a na ann an Anna ann an A	-i		ļ.
E	L F	2,	06		1
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-		
P6 = 6.22	Le#		6.0	1	
26 = 11.K	···· · · · · · · · · · · · · · · · · ·		117		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·			4	
hub = 1.2K					
En elizibiz) + 14(11)		B	. [ -		·····
Eu = 1.216.2) + 1.6(11) = 25 K - controls	Y	///		. 4 .	32,44
		in der er ster er en er		$\varphi = \varphi$	
		····· ··· ··· ··· ··· ··· ··· ··· ···		<u>.</u>	
	F	<b>S</b>	••••		
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	
			·		
Vu=14(3.8) 13	2 4-76"	\$ A3	3267		
= 4,6 K	Bolta	us	fill		
		_/	1	· · · · · · · · · · · · · · · · · · ·	
P-11117	Shear	tab	· · · · · · · · · · · · · · · · · · ·	··········	
-tu=hlele1	1 sec 7	Follo	NIME	$\mathbf{b}$	
= The K	Prin	2004	· · · · · · · · · · · · · · · · · · ·	/	
		• • • • •			
المربعة And And And And And And And And And And	na na serie na serie La campana serie da serie na s	yer an or al and a graduation of the state of the s	na anna an fhairtean 2010 ann an Anna ann ann ann ann ann ann ann		······································
				· · · · · · · · · · · · · · · · · · ·	
		1 .	··· <i>·</i> ···· ·	••••••••••••••••••••••••••••••••••••••	
	···· ; ···· · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	alar an	····•·································		
				: 	· · · · · · · · · · · · · · · · · · ·
	·····	• • • • • • • • • • • • • • • • • • • •			







#### **BASIC DESIGN DATA**

#### Non-Seismic Design

Column: Size: W10X30 Material: A992 Orientation: Web Out of Plane Axial Force (Tension): 0 kips Axial Force (Compression): 0 kips Shear Force: 0 kips

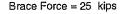
#### Left Side Beam:

Size: W10X30 Material: A992 Axial Force (Tension): 0 kips Axial Force (Compression): 17.6 kips Shear Force: 6 kips Work Point X: 0 in. Work Point Y: 0 in.

#### Single Plate:

Length: 6 in. Material: A36 Bolts: 7/8"Ø A325-N -STD Bolt Vertical Spacing: 3 in. Bolt Vertical Edge Distance: 1.5 in. Bolt Horizontal Spacing: 3 in. Bolt Horizontal Edge Distance: 1.5 in.

#### Lower Left Brace: Size: L3X3X3/16 Length: 0 Ft


Lengui. O r

Material: A36 Axial Force (Tension): 25 kips Axial Force (Compression): 0 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.56/1 Bolt Edge Distance: 1.5 in.

#### Gusset Plate:

Material: A36 Column Side Length: 10.47 in. Beam Side Length: 6.2613 in. Brace Side Length: 5.8211 in. Column Side Free Edge: x = 7 in., y = 12.5 in. Beam Side Free Edge: x = 5.4887 in., y = 9.135 in. Thickness: 0.375 in. Setback from Column: 0.5 in. Bolt Edge Distance: 1.5 in. Gusset-Brace Gap: -6.625 in.

#### Lower Left Brace to Gusset Connection



Brace to Gusset Weld Size = 1/8 in. Brace to Gusset Weld Length Along, Heel of Angle = 6.625 in. Brace to Gusset Weld Length Along Toe of Angle = 2.4901 in. Weld Size = 1/8 > Minimum Weld Size 1/8 in. (OK) Weld Size = 1/8 < Maximum Weld Size = 3/16 in. (OK) Heel Weld: ØRn = 6 * 0,75*0.6*Fexx*0.707*w*L = 1*0.75*0.6*70*0.707*0.125*6.625 = 1/8.443 kips Toe Weld: ØRn = 6 * 0.75*0.6*Fexx*0.707*w*L = 1*0.75*0.6*70*0.707*0.125*2.4901

= 6.932 kips  
Total Weld Design Strength:  

$$Ø$$
Rn = 25.375  $\ge$  25 kips (OK)  
Maximum Weld Force Gusset Can Develop:  
= 1 * 0.6*Fy*t*L

= 1 * 0.6*36 * 0.375 * (6.625 + 2.4901) = 73.832 * 25 kips (OK)

Maximum Weld Force Brace Can Develop: =  $1 \stackrel{*}{,} 0.6^* Fy^* t^* L$ =  $1 \stackrel{*}{,} 0.6^* 36 \stackrel{*}{,} 0.1875 \stackrel{*}{,} (6.625 + 2.4901)$ =  $36.916 \ge 25$  kips (OK)

#### Check Lower Left Brace

Shear Lag Factor,U = 1-x/L = 1 - 0.8196/6.625 = 0.8763

ØRn = 0.75 Fu * U*Ag = 0/75*58 *0.8763*1.0898 =∕41.543 ≥ 25 kips (OK)

Lower Left Brace Gusset Dimensions:

Column Side, Lgc = 0 in. Beam Side, Lgb = 6.2613 in. Beam Side Free Edge, Lvfx = 5.4887 in. Beam Side Free Edge, Lvfy = 9.135 in. Column Side Free Edge, Lhfx = 7 in. Column Side Free Edge, Lhfy = 12.5 in.

#### Lower Left Brace Gusset Edge Forces:

Special case: 3

Gusset edge moments carried by: Beam interface

Theta = 32.661 Degrees, eb = 5.235 in. ec = 0 in. Beta = 0 in. BetaBar = 0 in. AlphaBar = 3.6307 in.

Alpha = (Beta + eb)*Tan(Theta) - ec = (0 + 5.235)*Tan(32.661) - 0 = 3.3558 in.

#### With Tensile Brace Force:

 $\begin{array}{l} r = {\sf Fx}\,/\,(({\sf Alpha}\,+\,ec)^2\,\,+\,({\sf beta}\,+\,eb)^2\,)^{0.5} \\ = 25\,/\,((3.3558\,+\,0)^2\,\,+\,(0\,+\,5.235)^2\,)^{0.5} \\ = 4.0204\,\,{\sf kips/in}. \end{array}$ 

Hb = Alpha * r = 3.3558 * 4.0204 = 13.492 kips

Hc = ec * r = 0 * 4.0204= 0 kips

Vb = eb * r = 5.235 * 4.0204 = 21.047 kips

Vc = beta * r = 0 * 4.0204 = 0 kips

Mb = |Vb * (Alpha - AlphaBar)| = |21.047 * (3.3558 - 3.6307)| = 5.7856 k-in.

Mc = 0

#### With Compressive Brace Force:

$$r = Fx / ((Alpha + ec)^2 + (beta + eb)^2)^{0.5} = 0 / ((3.3558 + 0)^2 + (0 + 5.235)^2)^{0.5} = 0 kips/in.$$

Hb = Alpha * r = 3.3558 * 0 ≃0 kips

Hc = ec * r = 0 * 0= 0 kips

Vb = eb * r = 5.235 * 0 = 0 kips

Vc = beta * r = 0 * 0 = 0 kips

Mb = 0

Mc = 0

#### Lower Left Brace Gusset Thickness

'Try t = 3/8' Han Maximum Brace Weld Force Gusset Can Develop: = 0.75 * 0.6*Fu*t*(L1+L2) = 0.75 * 0.8*58 * 0.375 * (6.625 + 2.4901) = 89.214 > 25 kips (OK)

#### Block Shear of Gusset at Brace:

 $Agv = Anv = 2^{L*t} = 2^{6.625*0.375} = 4.9688 in^{2}$ 

Agt = Ant = d*t = 3*0.375 = 1.125 in²

ØRn = 0.75 * (0.6 * Min(Fu * Anv;Fy * Agv) + Ubs * Fu * Ant) = 0.75 * (0.6*Min(58 * 4.9688; 36 * 4.9688) + 1 * 58 * 1.125) = 129.4 ≥ 25 kips (OK)

#### **Check Whitmore Section:**

Width1 = 1.1547*Lweld = 1.1547*6.625 = 7.6499 in. Width2 = 0.57735*(6.625 + 2.4901) + 3 = 8.2626 in. Width, Lw = Max(Width1;Width2) = 8.2626 in.

Lwo = 2.6666 in. of Lw is outside the gusset free edge.

Width of Whitmore Section inside gusset boundaries, Lwg = 5.596 in.

#### Whitmore Section Stress:

Tension:

 $fa = Fx/(Lwg^{t} + Lwb^{t}wb)$ = 25/(5.596 * 0.375 + 0 * 0.3) = 11.913 ksi

Compression:

fa = Fx/(Lwg*t + Lwb*twb) = 0/(5.596 * 0.375 + 0 * 0.3)= 0 ksi

#### Whitmore Section Yielding:

= 0.9*(Lwg*t*Fyg + Lwb*twb*Fyb)

= 0.9*(5.596 * 0.375 * 36 + 0 * 0.3* 50)

= 67.992 > 25 kips (OK)

#### Lower Left Brace Gusset to Beam Connection

Horizontal Force on Welds, Hb = 13.492 kips

Vertical Force on Welds, Vb = 21.047 kips

Moment on Welds, M = 0 k-in.

Weld Length on Each Side of Gusset Plate, L = 6.2613 in.

Average Force on Welds per Unit Length = fraverage =  $((V/L+3M/(L^2))^2 + (H/L)^2)^{0.5}$  $= ((21.047/6.2613 + 3*0/(6.2613^2))^2 + (13.492/6.2613)^2)^{0.5}$ = 3.9928 kips/in.

fr = fraverage

Maximum useful weld size = 0.7072 * Fu* t / Fexx = 0.7072 * 58 * 0.375/70 = 0.2197 in.

Use Richard Factor, Rf = 1.25

Required Weld Size, w = Max(Rf*f_avrg;f_peak)/(0.75*0.6*1.41*Fexx) = 4.991/(0.75*0.6*1.41*70)= 0.112 in.

Use 3/16 in. Weld

#### Left Side Beam to Column Connection

Transfer Force from Right = 0 kips Compression Transfer Force from Right = 0 kips Tension Transfer Force from Left = 0 kips Compression Transfer Force from Left = 0 kips Tension

Vertical Force on Single Plate = V (Maximum Combined Force) = 27.047 kips

Horizontal Force on Single Plate = H (Maximum Combined Force) H (Tension)= 0 kips H (Compression)= 0 kips

# **Design Single Plate** Plate Length = 6 in.

3/4 Ghear 520 Plate Width = 6.5 in Plate Thickness = 0.375 in Bolts: (4)7/8"Ø A325-N -STD Bolt Holes on S. Plate: 0.9375" Horiz. X 0.9375" Vert. Bolt Holes on Gusset:0.9375" Horiz. X 0.9375" Vert.

Bolt Vertical Spacing = 3 ≥ Min. Spacing = 2.3333 in. (OK)

Vert. Edge Dist. on S. Plate = 1.5 ≥ Min. Edge Dist. = 1.5 in. (OK)

#### Bolt Shear Strength:

Eccentricity, ex = 3.5 in. Vertically: 2 Bolts with 3 in. Spacing Horizontally: 2 Bolts with 3 in. Spacing Resultant Load (27.047 kips) Inclined 0 Degrees from Vertical Inclined Eccentic Load Coefficient, C = 1.8382

ØRn = C*Fv = 1.8382 * 21.648 = 39.792 ≥ 27.047 kips (OK)

#### Bolt Bearing

Vertical Load:

Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs

 $\begin{array}{l} \mbox{Bolt Spacing} = 3 \mbox{ in., Hole Size} = 0.9375 \mbox{ in.} \\ = 0.75 \mbox{ $^{+}1.2 \mbox{ $^{+}Lc$ \mbox{ $^{+}Fu$} \le 0.75 \mbox{ $^{+}2.4 \mbox{ $^{+}d$ \mbox{ $^{+}Fu$} = $$} \\ = 91.35 \mbox{ kips/in.} \\ = 0.75 \mbox{ $^{+}1.2 \mbox{ $^{+}2.0625 \mbox{ $^{+}58$} = $107.7 \mbox{ kips/in.} $$ \\ \mbox{ Use: Fbs} = 91.35 \mbox{ kips/in.} $$ \\ \mbox{ Bearing Strength/Bolt/Thickness Using Bolt Edge Distance} = Fbre $$ \\ \mbox{ Edge Dist. $= 1.5 \mbox{ in., Hole Size} = 0.9375 \mbox{ in.} $$ \\ = 0.75 \mbox{ $^{+}1.2 \mbox{ $^{+}Lc$ \mbox{ $^{+}Fu$} \le 0.75 \mbox{ $^{+}2.4 \mbox{ $^{+}d$ \mbox{ $^{+}Fu$} = $$ \\ 91.35 \mbox{ kips/in.} $$ \\ = 0.75 \mbox{ $^{+}1.2 \mbox{ $^{+}1.0313 \mbox{ $^{+}58$} = $53.831 \mbox{ kips/in.} $$ \\ \mbox{ Equiv. Bolt Factor, ef} = C/Nb \mbox{ $^{+}1$} = 1.8382 \mbox{ $^{+}4$} = $$ \\ 0.4595 \mbox{ $^{-}0.3831 \mbox{ $^{+}91.35 \mbox{ $^{-}(2-1)}$} ) \mbox{ $^{+}0.375 \mbox{ $^{-}50.038 \mbox{ $^{-}2.047 \mbox{ kips}}$} (OK) $$ \end{tabular}$ 

#### Horizontal Load:

Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 0.9375 in. = 0.75 * 1.2 * Lc * Fu ≤ 0.75 * 2.4 * d * Fu = 91.35 kips/in. = 0.75 * 1.2 * 2.0625 * 58 = 107.7 kips/in. Use: Fbs = 91.35 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbre Edge Dist. = 1.5 in., Hole Size = 0.9375 in.  $= 0.75 * 1.2 * Lc * Fu \le 0.75 * 2.4 * d * Fu =$ 91.35 kips/in. = 0.75 * 1.2 * 1.0313 * 58 = 53.831 kips/in. With Compressive Force: = 62.969 > 0 kips (OK) With Tensile Force: ØRn = ef * NI * (Fbe + Fbs * (Nh - 1)) * t = 0.4595 * 2 * (53.831 + 91.35 * (2 - 1)) * 0.375 = 50.038 > 0 kips (OK)

#### Bolt Bearing on Beam Web:

Vertical Load:

 $\begin{array}{l} \text{Bearing Strength/Bolt/Thickness Using Bolt Spacing = }\\ \text{Fbs}\\ \text{Bolt Spacing = 3 in., Hole Size = 0.9375 in.}\\ &= 0.75 * 1.2 * \text{Lc} * \text{Fu} \leq 0.75 * 2.4 * \text{d} * \text{Fu} = \\ &102.4 \text{ kips/in.}\\ &= 0.75 * 1.2 * 2.0625 * 65 = 120.7 \text{ kips/in.}\\ \text{Use: Fbs = 102.4 kips/in.}\\ &\mathcal{Q}\text{Rn} = \text{ef} * \text{Nh*Fbs} * \text{NI} * \text{t}\\ &= 0.4595 * 2 * 102.4 * 2 * 0.3\\ &= 56.455 \geq 27.047 \text{ kips (OK)}\\ \end{array}$ 

#### Horizontal Load:

Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 0.9375 in. =  $0.75 \times 1.2 \times Lc \times Fu \le 0.75 \times 2.4 \times d \times Fu =$ 102.4 kips/in. =  $0.75 \times 1.2 \times 2.0625 \times 65 = 120.7$  kips/in. Use: Fbs = 102.4 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbre Edge Dist. = 1.5 in., Hole Size = 0.9375 in. =  $0.75 \times 1.2 \times Lc \times Fu \le 0.75 \times 2.4 \times d \times Fu =$ 102.4 kips/in. =  $0.75 \times 1.2 \times 1.0313 \times 65 = 60.328$  kips/in.

 $\frac{\text{With Tensile Force}}{\emptyset Rn = \text{ef * NI * (Fbe + Fbs * (Nh - 1)) * t}}$ 

= 0.4595 * 2 * (60.328 + 102.4 * (2 - 1)) * 0.3=  $44.861 \ge 0$  kips (OK)

The following formulae have been derived using an interaction equation of the form  $ft/Ft + (fv/Fv)^2 = 1$ (Ref. "Combined Shear and Tension Stress", Subhash C. Goel, Engineering Journal,3rd Q 1986, AISC).

Load Angle,  $\emptyset = Atn(H/V) = 0$  Degees A = Sin( $\emptyset$ ) = 0 B = Cos( $\emptyset$ ) = 01.

#### Rupture:

```
Net Area, An = (L - NI * (dv + 0.0625)) * t
= (6 - 2 * (0.9375 + 0.0625)) * 0.375
= 1.5 \text{ in}^2
```

ØRn = 0.75 * 0.6*An*Fu = 0.75 * 0.6 * 1.5 * 58 = 39.15 ≥ 27.047 kips (OK)

#### Yielding:

Ag=  $L^{*}t = 6 * 0.375 = 2.25 \text{ in}^2$ 

ØRn = 0.9 * 0.6*Ag*Fy = 0.9 * 0.6 * 2.25 * 36 = 43.74 ≥ 27.047 kips (OK)

#### Block Shear:

Vertical (An1,Ft1) and Horizontal (An2,Ft2) Sections:

```
Pattern 1:
```

```
An1 = (L - Lv - (NI - 0.5) * (dv + 0.0625)) * t

= (6 - 1.5 - (2 - 0.5) * (0.9375 + 0.0625)) * 0.375

= 1.125 in^2

An2 = (W - c - Lh - (Nh - 0.5) * (dh + 0.0625)) * t

= (6.5 - 0.5 - 1.5 - (2 - 0.5) * (0.9375 + 0.0625)) * 0.375

= 1.125 in^2

\emptysetRn = 0.75 * (fv1 * An1 + ft2* An2)

0.75 * (24.0 + 4 + 105 + 551 + 4 + 105)
```

= 0.75 * (34.8 * 1.125 +58* 1.125) = 78.3 ≥ 27.047 kips (OK)

#### Pattern 2:

 $\begin{array}{l} \mathsf{An1} = (\mathsf{L} - 2^*\mathsf{Lv} \cdot (\mathsf{NI} - 0.5) * (\mathsf{dv} + 0.0625)) * t \\ = (6 - 2^*1.5 - (2 - 0.5) * (0.9375 + 0.0625)) * 0.375 \\ = 0.5625 \, \mathrm{in}^2 \\ \mathsf{An2} = 2^*(\mathsf{W} - \mathsf{c} - \mathsf{Lh} - (\mathsf{Nh} - 0.5) * (\mathsf{dh} + 0.0625)) * t \\ = 2^*(*6.5 - 0.5 - - 1.5 - (2 - 0.5) * (0.9375 + 0.0625)) * 0.375 \\ = 2.25 \, \mathrm{in}^2 \\ & \ensuremath{\ensuremath{\mathsf{ORn}}} = 0.75 * (\mathsf{fv1} * \mathsf{An1} + \mathsf{ft2}^* \mathsf{An2}) \\ = 0.75 * (34.8 * 0.5625 + 58^* 2.25) \\ = 112.6 \ge 27.047 \, \mathrm{kips} \, (\mathsf{OK}) \\ \end{array}$ 

#### Beam Web Tear-out:

#### Combined Tension and Shear

Load Angle,  $\emptyset = Atn(H/V) = 0$  Degees A = Sin( $\emptyset$ ) = 0 B = Cos( $\emptyset$ ) = 01.

```
Ag = 3.141 \text{ in}^2 An = 2.541 \text{ in}^2
```

#### <u>Rupture:</u>

ØRn = 0.75 * 0.6*An*Fu = 0.75 * 0.6 * 2.541 * 65

```
= 74.324 > 27.047 kips (OK)
```

#### Yielding:

ØRn = 0.9 * 0.6*Ag*Fy = 0.9 * 0.6 * 3.141 * 50 = 84.807 ≥ 27.047 kips (OK)

#### Block Shear:

Vertical (An1,Ft1) and Horizontal (An2,Ft2) Sections:

#### Pattern 2:

Ag1 = 0.9 in² An1 = 0.6 in² Ag2 = 2.7 in² An2 = 1.8 in²

ØRn = 0.75 * (fv1 * An1 +ft2* An2) = 0.75 * (39 * 0.6 +65* 1.8) = 105.3 ≥ 27.047 kips (OK)

#### Plate Bending:

Net Area, An =  $1.5 \text{ in}^2$ Net Section Modulus, Sn =  $1.7055 \text{ in}^3$ e = (tp+tw)/2 = (0.375 + 0.3) / 2 = 0.3375 in^2 Stress = H/An + (Mo + V * (c + Lh))/Sn + 6*(H*e/2)/(t*An) = 0/1.5 + (0 + 27.047 * (0.5 + 1.5))/1.7055+ 6*(0 * 0.3375/2)/(0.375*1.5) = 31.718 \le 0.9*Fy = 32.4 \text{ ksi OK}

#### Plate Buckling:

<u>Maximum Stress:</u> = H/An + 6*(H * ex/2)/(t*An)+(V*cx+Mom)/S = 0 /1.5 + 6 * (0 * 0.3375 / 2) / (0.375 * 1.5) + (27.047 * 2 + 0) / 1.7055 = 31.718 ksi <u>Design Bending Stress for Lateral Buckling:</u>

```
\begin{array}{ll} c = 2 \text{ in.,} & \text{ho} = \text{L} = 6 \text{ in.,} & 2c/\text{ho} = 0.6667, & \text{K} = 2.5 \\ m = (\text{Fy} / \text{K})^{0.5} & \text{ho} / (0.98 \text{*} \text{E}^{0.5} & 2 \text{*} \text{tp}) \\ & = (36 / 2.5)^{0.5} & 6 / (0.98 \text{*} \text{E} & 2 \text{*} & 0.375) \\ & = 0.1819 \\ \text{Q} = 1 \\ \\ & \text{ØFcr} = 0.9 \text{``Fy} \text{``Q} = 0.9 \text{``36} \text{``1} \end{array}
```

= 32.4 ≥ 31.718 ksi OK

#### Compression Buckling of Plate:

Using K = 1.2 and L = 2 in. r = t/(12^{0.5}) = 0.375/3.464 = 0.1083 in. KL/r = 22.17

 $Lc = KL/r * (Fy/E)^{0.5} /Pl$ = 22.17 * (36/29000.)^{0.5} /3.1416 = 0.2486 Fcr = 0.658^(Lc²)*Fy

 $= 0.658^{0.0618} * 36 = 35.08$  ksi

 $\begin{array}{l} Pn = Lp^*t^*Fcr = 6^*0.375^*35.08 = 81 \ \ kips \\ Mu = Pu^*e/2 = 0^*0.3375/2 = 0 \ k-in. \\ Mn = Fy^*Lp^*t^2/4 = 36^*6 \ ^* 0.375^2 \ /4 = 7.5938 \ k-in. \end{array}$ 

Utilization Factor:

 $\begin{array}{l} \mathsf{Pu} \ / \ (0.9 \ ^{\circ} \ \mathsf{Pn}) < 0.2 \\ \mathsf{Pu} \ / \ (2^{\circ} 0.9 \ ^{\circ} \mathsf{Pn}) + \ \mathsf{Mu} / (0.9 \ ^{\circ} \mathsf{Mn}) \\ &= 0 \ / \ (2^{\circ} 0.9 \ ^{\circ} \ 81) + 0 \ / \ (0.9 \ ^{\circ} \ 7.5938) \\ &= 0 \ \leq \ 1.0 \ \mathsf{OK} \end{array}$ 

#### Plate to Column Weld:

Weld Size =  $0.1875 \ge Min$ . Weld Size = 0.1875 in. (OK)

#### Weld Stresses:

```
\begin{aligned} & \text{fr} = [((H / L) + 6^{*}\text{Mo}/\text{L}^{2})^{2} + (V/\text{L})^{2}]^{0.5} \\ & = [((0 / 6) + 6^{*}0/6^{2})^{2} + (27.047/6)^{2}]^{0.5} \\ & = 4.5078 \text{ kips/in.} \end{aligned}
```

Required Weld Size = Max(fr; 1.25 * fraverage) / (0.75*0.6*1.414 * Fexx) = Max(4.5078; 1.25 * 4.5078) / (0.75*0.6*1.414 * 70) = 0.1265  $\leq$  3/16 in. (OK) <u>Useful weld size:</u> = Min(0.75*0.6 * tp * Fup; 2 * 0.75*0.6 * tc * Fuc) / (0.75*0.6*1.414 * Fexx) = Min(0.75*0.6 * 0.375 * 58; 2 * 0.75*0.6 * 0.3 * 65) / (0.75*0.6*1.414 * 70) = 0.2197  $\geq$  0.1265 in. (OK)

#### Beam and Column Local Stresses for Left Side Beam

#### Beam Web Local Yielding:

= 4.5078 kips/in.

Force from Bottom, Rbot =  $((1.73^{HbBot})^2 + (VbBot+3MbBot/LBot)^2)^{0.5}$ =  $((1.73^{13.492})^2 + (21.047+3^{5.7856}/6.2613)^2)^{0.5}$ = 33.349 kips

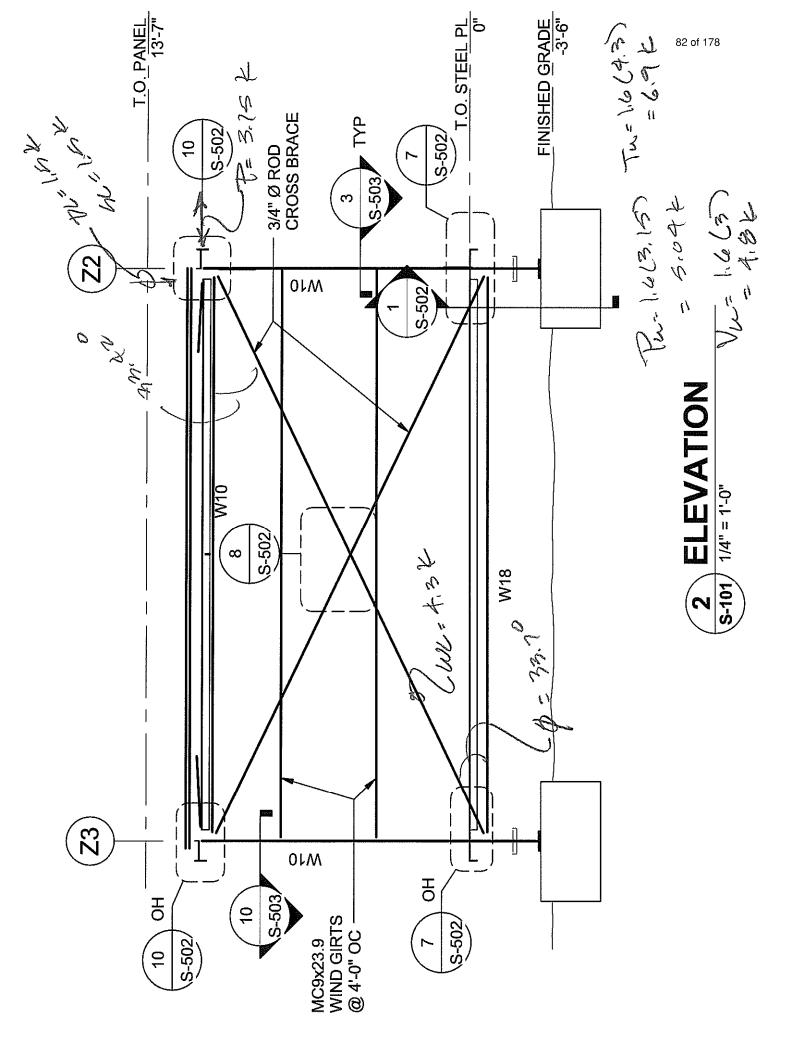
Required Web Thickness = Rbot / (1 *Fy * (L+2.5*k)) = 33.349 / (1 * 50 *(6.2613+2.5*0.81)) = 0.0805 in. ≤ 0.3 in. (OK)

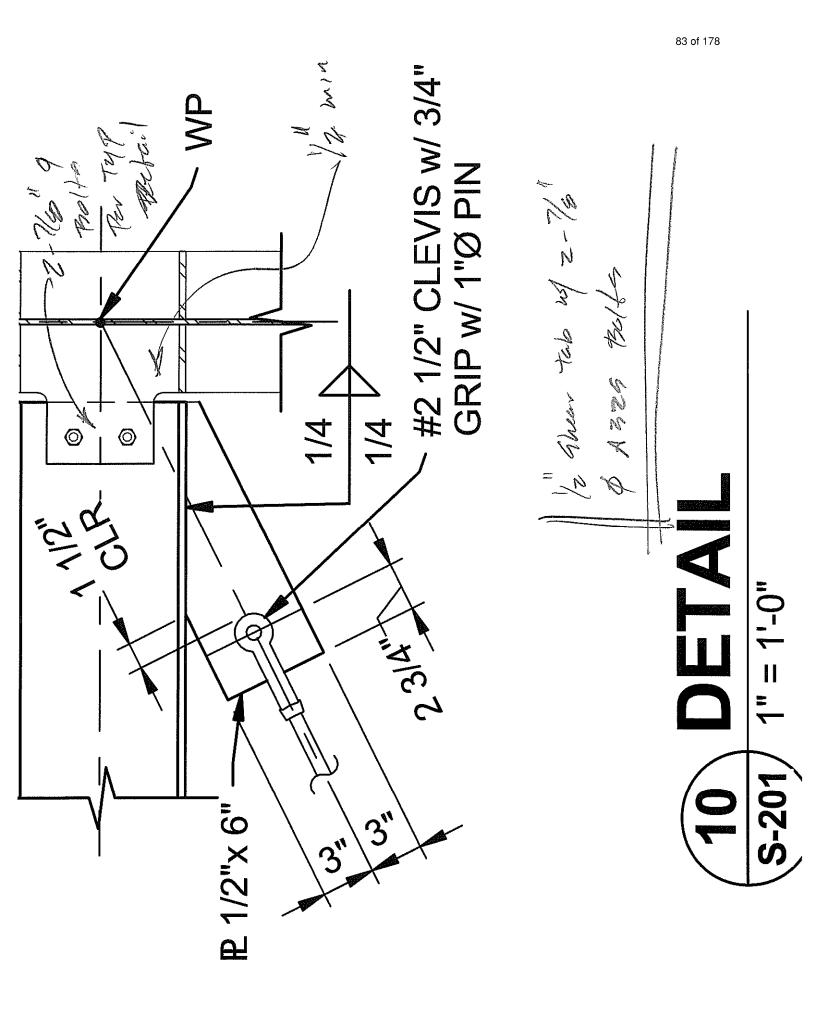
#### Beam Web Crippling:

```
Force from Bottom, Rbot = VoBot+3MoBot/LBot
= 21.047+3*5.7856/6.2613
= 2.7721 kips
```

 $\begin{array}{l} \text{Design Strength for Bottom Loading, } \emptyset \text{Rn:} \\ &= 0.75^{*} \ 0.4 \ ^{*} \ \text{E}^{0.5} \ ^{*} \\ & \text{tw}^{2} \ ^{(1+(4^{*}(\text{Nbot/d})\text{-}0.2)^{*}(\text{tw/tf})^{1.5})^{*}(\text{Fy*tf/tw})^{0.5} \\ &= 0.75^{*} \ 0.4 \ ^{*} \ 170.3 \ ^{*} 0.3^{2} \ ^{*}(1+(4^{*}(6.2613/10.47)\text{-}0.2) \\ & \ ^{*}(0.3/0.51)^{1.5})^{*}(50^{*} 0.51/0.3)^{0.5} \\ &= 84.315 \ \text{kips} \ge 2.7721 \ \text{kips} \ (\text{OK}) \end{array}$ 

#### Column Web Bending and out of Plane Shear:


H = Fx/L = 0/6= 0 kips/ in.Moment, M = H*Wc/4 = 0 * 8.85/ 4 = 0 kip-in/in.


Bending Strength:

#### Shear Stress:









# 3. SEE 4/- FOR BEAM SCHEDULE.

# **BEAM TO COLUMN CONNECTION** 1 1/2" = 1'-0" S-501 **~**~~

	WELD	W2	3/16"	1/4"
Ö	ME	W1	1/4"	5/16"
E, U.N.O	STIFF	PLATE	3/8"	3/8"
<b>BEAM SCHEDUL</b>	SHEAR	PLATE	1/4"	3/8"
	ON	BOLTS	3	4
BEA	BOLT	SIZE	7/8" DIA.	7/8" DIA.
	REAM		W10, C10	W18



#### **BASIC DESIGN DATA**

#### Non-Seismic Design

Column: Size: W10X30 Material: A992 Orientation: Web Out of Plane Axial Force (Tension): 0 kips Axial Force (Compression): 0 kips Shear Force: 0 kips

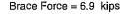
#### Left Side Beam:

Size: W10X30 Material: A992 Axial Force (Tension): 10.8 kips Axial Force (Compression): 4.8 kips Shear Force: 4.8 kips Work Point X: 0 in. Work Point Y: 0 in.

#### Single Plate:

Length: 6 in. Material: A36 Bolts: 7/8"Ø A325-N -STD Bolt Vertical Spacing: 3 in. Bolt Vertical Edge Distance: 1.5 in. Bolt Horizontal Spacing: 3 in. Bolt Horizontal Edge Distance: 1.5 in.

#### Lower Left Brace:


Size: L3X8X3/16 Length: 0 Ft

```
Material: A36
Axial Force (Tension): 6.9 kips
Axial Force (Compression): 0 kips
Work Point X: 0 in.
Work Point Y: 0 in.
Rise/Run: 1/1.515
Bolt Edge Distance: 1.5 in.
```

#### Gusset Plate:

Material: A36 Column Side Length: 10.47 in. Beam Side Length: 10 in. Brace Side Length: 4.93 in. Column Side Free Edge: x= 13.25 in., y= 7.75 in. Beam Side Free Edge: x= 5.762 in., y= 3.5079 in. Thickness: 0.375 in. Setback from Column: 0.5 in. Bolt Edge Distance: 1.5 in. Gusset-Brace Gap: -3 in.

#### Lower Left Brace to Gusset Connection



ØRn = 8 * 0.75*0.6*Fexx*0.707*w*L

= 1*0.75*0.6*70*0.707*0.125*1.1276

Brace to Gusset Weld Size = 1/8 in. Brace to Gusset Weld Length Along Heel of Angle = 3 in. Brace to Gusset Weld Length Along Toe of Angle = 1.1276 in. Weld Size =  $1/8 \ge Minimum$  Weld Size = 1/8 in. (OK) Weld Size =  $1/8 \le Maximum$  Weld Size = 8/16 in. (OK) Heel Weld: ØRn = 6 * 0.75%0.6*Fexx*0.707*w*L= 1*0.75%0.6*T0*0.707*0.125*3= 8.3514 kips Toe Weld: = 3.139 kips

Total Weld Design Strength:

Maximum Weld Force Gusset Can Develop:

= 1 * 0.6*Fy*t*L/ = 1 * 0.6*36 */0.375 * (3 + 1.1276)

= 33.434 > 6.9 kips (OK)

Maximum Weld Force Brace Can Develop: =  $1 \stackrel{*}{,} 0.6^* Fy^*t^*L$ =  $1 \stackrel{*}{,} 0.6^*36 \stackrel{*}{,} 0.1875 \stackrel{*}{,} (3 + 1.1276)$ =  $16.717 \ge 6.9$  kips (OK)

#### Check Lower Left Brace

ØRn = 0.9*Fy * Ag = 0.9 */36 * 1.0898 = 35.311 ≥ 6.9 kips (OK)

Tension Rupture:

Shear Lag Factor, U = 1-x/L = 1 - 0.8196/3 = 0.7268

Lower Left Brace Gusset Dimensions:

Column Side, Lgc = 0 in. Beam Side, Lgb = 10 in. Beam Side Free Edge, Lvfx = 5.762 in. Beam Side Free Edge, Lvfy = 3.5079 in. Column Side Free Edge, Lhfx = 13.25 in. Column Side Free Edge, Lhfy = 7.75 in.

#### Lower Left Brace Gusset Edge Forces:

Special case: 3

Gusset edge moments carried by: Beam interface

Theta = 56.573 Degrees, eb = 5.235 in. ec = 0 in. Beta = 0 in. BetaBar = 0 in. AlphaBar = 5.5 in.

Alpha = (Beta + eb)*Tan(Theta) - ec = (0 + 5.235)*Tan(56.573) - 0 = 7.931 in.

#### With Tensile Brace Force:

Hb = Alpha * r = 7.931 * 0.7261 = 5.7586 kips

Hc = ec * r = 0 * 0.7261= 0 kips

Vb = eb * r = 5.235 * 0.7261 = 3.8011 kips

Vc = beta * r = 0 * 0.7261 = 0 kips

Mb = |Vb * (Alpha - AlphaBar)| = |3.8011 * (7.931 - 5.5)| = 9.2405 k-in.

Mc = 0

#### With Compressive Brace Force:

```
 \begin{aligned} r &= Fx / ((Alpha + ec)^2 + (beta + eb)^2)^{0.5} \\ &= 0 / ((7.931 + 0)^2 + (0 + 5.235)^2)^{0.5} \\ &= 0 \text{ kips/in.} \end{aligned}
```

Hb = Alpha * r = 7.931 * 0= 0 kips

Hc = ec * r = 0 * 0= 0 kips

Vb = eb * r = 5.235 * 0 = 0 kips

Vc = beta * r = 0 * 0 = 0 kips

Mb = 0

Mc = 0

#### Lower Left Brace Gusset Thickness

#### <u>Try t = 3/8"</u>

Maximum Brace Weld Force Gusset Can Develop: = 0.75 * 0.6*Fu*t*(L1+L2)= 0.75 * 0.6*58 * 0.375 * (3 + 1.1276)=  $40.399 \ge 6.9$  kips (OK)

#### Block Shear of Gusset at Brace:

Agv = Anv = 2*L*t = 2*3*0.375 = 2.25 in²

 $Agt = Ant = d^{*}t = 3^{*}0.375 = 1.125 in^{2}$ 

ØRn = 0.75 * (0.6 * Min(Fu * Anv;Fy * Agv) + Ubs * Fu * Ant) = 0.75 * (0.6*Min(58 * 2.25; 36 * 2.25) + 1 * 58 * 1.125) = 85.388 ≥ 6.9 kips (OK)

#### Check Whitmore Section:

Width1 =  $1.1547^*$ Lweld =  $1.1547^*3 = 3.4641$  in. Width2 =  $0.57735^*(3 + 1.1276) + 3 = 5.3831$  in. Width, Lw = Max(Width1;Width2) = 5.3831 in.

Lwo = 0.917 in. of Lw is outside the gusset free edge.

Width of Whitmore Section inside gusset boundaries, Lwg = 4.4661 in.

#### Whitmore Section Stress:

Tension:

fa = Fx/(Lwg*t + Lwb*twb) = 6.9/(4.4661 * 0.375 + 0 * 0.3) = 4.1199 ksi

#### Compression:

fa = Fx/(Lwg*t + Lwb*twb) = 0/(4.4661 * 0.375 + 0 * 0.3) = 0 ksi

#### Whitmore Section Yielding:

= 0.9*(Lwg*t*Fyg + Lwb*twb*Fyb) = 0.9*(4.4661 * 0.375 * 36 + 0 * 0.3* 50) = 54.263 > 6.9 kips (OK)

#### Lower Left Brace Gusset to Beam Connection

Horizontal Force on Welds, Hb = 5.7586 kips

Vertical Force on Welds, Vb = 3.8011 kips

Moment on Welds, M = 0 k-in.

Weld Length on Each Side of Gusset Plate, L = 10 in.

Average Force on Welds per Unit Length = fraverage =  $((V/L+3M/(L^2))^2 + (H/L)^2)^{0.5}$ =  $((3.8011/10 + 3^* 0/(10^2))^2 + (5.7586/10)^2)^{0.5}$ = 0.69 kips/in.

fr = fraverage

Maximum useful weld size = 0.7072 * Fu* t / Fexx = 0.7072 * 58 * 0.375/70 = 0.2197 in.

Use Richard Factor, Rf = 1.25

Required Weld Size, w = Max(Rf*f_avrg;f_peak)/(0.75*0.6*1.41*Fexx) = 0.8625/(0.75*0.6*1.41* 70) = 0.0194 in.

Use 3/16 in. Weld

#### Left Side Beam to Column Connection

Transfer Force from Right = 0 kips Compression Transfer Force from Right = 0 kips Tension Transfer Force from Left = (-0.9586) kips Compression Transfer Force from Left = 10.8 kips Tension

Vertical Force on Single Plate = V (Maximum Combined Force) = 8.6011 kips

Horizontal Force on Single Plate = H (Maximum Combined Force) H (Tension)= 10.8 kips H (Compression)= 0 kips

#### **Design Single Plate**

Plate Length = 6 in. Plate Width = 3.5 in. Plate Thickness = 0.5 in. Bolts: (2)7/8"Ø A325-N -STD Bolt Holes on S. Plate:0.9375" Horiz. X 0.9375" Vert. Bolt Holes on Gusset:0.9375" Horiz. X 0.9375" Vert.

Bolt Vertical Spacing =  $3 \ge Min$ . Spacing = 2.3333 in. (OK)

Vert. Edge Dist. on S. Plate = 1.5 ≥ Min. Edge Dist. = 1.5 in. (OK)

#### Bolt Shear Strength:

Eccentricity, ex = 2.0188 in. (Includes the effect of Transfer Force Ecc.) Vertically: 2 Bolts with 3 in. Spacing Horizontally: 1 Bolts with 3 in. Spacing Resultant Load (13.806 kips) Inclined 51.466 Degrees from Vertical Inclined Eccentic Load Coefficient, C = 1.3008

ØRn = C*Fv = 1.3008 * 21.648 = 28.159 > 13.806 kips (OK)

#### Bolt Bearing

Vertical Load:

Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs

Bolt Spacing = 3 in., Hole Size = 0.9375 in. = 0.75 * 1.2 * Lc * Fu < 0.75 * 2.4 * d * Fu = 91.35 kips/in. = 0.75 * 1.2 * 2.0625 * 58 = 107.7 kips/in. Use: Fbs = 91.35 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbre Edge Dist. = 1.5 in., Hole Size = 0.9375 in. = 0.75 * 1.2 * Lc * Fu < 0.75 * 2.4 * d * Fu = 91.35 kips/in. = 0.75 * 1.2 * 1.0313 * 58 = 53.831 kips/in. Equiv. Bolt Factor, ef = C/Nb  $\leq$  1 = 1.3008 / 2 = 0.6504 ØRn = ef * Nh*(Fbe + Fbs * (NI - 1)) * t = 0.6504 * 1 * (53.831 + 91.35 * (2-1))*0.5 = 47.213 > 8.6011 kips (OK)

#### Horizontal Load:

Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 0.9375 in. = 0.75 * 1.2 * Lc * Fu < 0.75 * 2.4 * d * Fu = 91.35 kips/in. = 0.75 * 1.2 * 2.0625 * 58 = 107.7 kips/in. Use: Fbs = 91.35 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbre Edge Dist. = 1.5 in., Hole Size = 0.9375 in. = 0.75 * 1.2 * Lc * Fu  $\leq$  0.75 * 2.4 * d * Fu = 91.35 kips/in. = 0.75 * 1.2 * 1.0313 * 58 = 53.831 kips/in. <u>With Compressive Force:</u> ØRn = ef * NI * Fbs * Nh * t = 0.6504 * 2 * 91.35 * 1 * 0.5 = 59.414 ≥ 0 kips (OK)

#### Bolt Bearing on Beam Web:

Vertical Load:

Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 0.9375 in. = 0.75 * 1.2 * Lc * Fu ≤ 0.75 * 2.4 * d * Fu = 102.4 kips/in. = 0.75 * 1.2 * 2.0625 * 65 = 120.7 kips/in. Use: Fbs = 102.4 kips/in. ØRn = ef * Nh*Fbs * Ni * t = 0.6504 * 1 * 102.4 * 2 * 0.3 = 39.951 ≥ 8.6011 kips (OK)

#### Horizontal Load:

Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 0.9375 in. = 0.75 * 1.2 * Lc * Fu  $\leq 0.75 * 2.4 * d * Fu =$ 102.4 kips/in. = 0.75 * 1.2 * 2.0625 * 65 = 120.7 kips/in. Use: Fbs = 102.4 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbre Edge Dist. = 1.5 in., Hole Size = 0.9375 in. = 0.75 * 1.2 * Lc * Fu  $\leq 0.75 * 2.4 * d * Fu =$ 102.4 kips/in. = 0.75 * 1.2 * 1.0313 * 65 = 60.328 kips/in.

With Tensile Force

 $\overline{\emptyset}$ Rn = ef * NI * (Fbe + Fbs * (Nh - 1)) * t

= 0.6504 * 2 * (60.328 + 102.4 * (1 - 1)) * 0.3 = 23.542 ≥ 10.8 kips (OK)

The following formulae have been derived using an interaction equation of the form  $ft/Ft + (fv/Fv)^2 = 1$ (Ref. "Combined Shear and Tension Stress", Subhash C. Goel, Engineering Journal,3rd Q 1986, AISC).

Load Angle,  $\emptyset$  = Atn(H/V) = 51.466 Degees A = Sin( $\emptyset$ ) = 0.7822 B = Cos( $\emptyset$ ) = 0.623

#### Rupture:

```
Net Area, An = (L - NI * (dv + 0.0625)) * t
= (6 - 2 * (0.9375 + 0.0625)) * 0.5
= 2 in<sup>2</sup>
```

#### Yielding:

 $Ag = L^{*}t = 6 * 0.5 = 3 in^{2}$ 

$$\begin{split} & \ensuremath{\mathbb{Q}} \mathsf{Rn} = 1^2 \ ^* 0.18 \ ^* (\mathsf{A} / \mathsf{B})^2 \ ^* (-1 / 0.9 + (1 / (0.9^2) + (\mathsf{B} / \mathsf{A})^2 / (0.09 \ ^* 1^2))^{0.5}) \ ^* \mathsf{Ag} \ ^* \mathsf{Fy} / \mathsf{A} \\ & = 1^2 \ ^* 0.18 \ ^* (0.7822 / 0.623)^2 \ ^* (-1 / 0.9 + (1 / (0.9^2) + (0.623 / 0.7822)^2 / (0.09 \ ^* 1^2))^{0.5}) \ ^* 3 \ ^* 36 / 0.7822 \\ & = 69.224 \ \ge 13.806 \ \mathsf{kips} \ \mathsf{(OK)} \end{split}$$

#### Block Shear:

Vertical (An1,Ft1) and Horizontal (An2,Ft2) Sections:

#### Pattern 1:

 $\begin{array}{l} \mathsf{An1} = (\mathsf{L} - \mathsf{Lv} \cdot (\mathsf{NI} - 0.5) * (\mathsf{dv} + 0.0625)) * t \\ = (6 - 1.5 - (2 - 0.5) * (0.9375 + 0.0625)) * 0.5 \\ = 1.5 \ \mathsf{in}^2 \\ \mathsf{An2} = (\mathsf{W} - \mathsf{c} - \mathsf{Lh} - (\mathsf{Nh} - 0.5) * (\mathsf{dh} + 0.0625)) * t \\ = (3.5 - 0.5 - 1.5 - (1 - 0.5) * (0.9375 + 0.0625)) * 0.5 \\ = 0.5 \ \mathsf{in}^2 \\ \end{array}$ 

#### Adjusted Design Stress:

ft1 =  $0.75^{\circ}0.18^{\circ} (A / B)^{2}^{\circ} (-1 + (1 + (B / A)^{2} / 0.09)^{0.5})^{\circ} Fu$ =  $0.75^{\circ}0.18^{\circ} (0.7822 / 0.623)^{2}^{\circ} (-1 + (1 + (0.623 / 0.7822)^{2} / 0.09)^{0.5})^{\circ} 58$ = 22.675 ksi

Fv1 = ft1 * B / A = 22.675 * 0.623 / 0.7822 = 18.059 ksi

ft2 =  $0.75^{\circ}0.18^{\circ}$  (B/A)² * (-1 + (1 + (A / B)² / 0.09)^{0.5}) * Fu =  $0.75^{\circ}0.18^{\circ}$  (0.623 / 0.7822)² * (-1 + (1 + (0.7822 / 0.623)² / 0.09)^{0.5}) * 58 = 16.405 ksi

Fv2 = ft2 * A / B = 16.405 * 0.7822 / 0.623 = 20.599 ksi

ØRn = (Fv1 * An1 + Ft2 * An2)/B = (18.059 * 1.5 + 16.405 * 0.5)/0.623 = 56.648 ≥ 13.806 kips (OK)

#### Pattern 2:

An1 = (L - 2*Lv - (NI - 0.5) * (dv + 0.0625)) * t = (6 - 2*1.5 - (2 - 0.5) * (0.9375 + 0.0625)) * 0.5 = 0.75 in² An2 =  $2^{*}(W - c - Lh - (Nh - 0.5) * (dh + 0.0625)) * t$ =  $2^{*}(^{*}3.5 - 0.5 - 1.5 - (1 - 0.5) * (0.9375 + 0.0625)) * 0.5$ = 1 in² <u>Adjusted Design Stress:</u> (Same as Above)

ØRn = (Fv1 * An1 + Ft2 * An2)/B = (18.059 * 0.75 + 16.405 * 1)/0.623 = 48.074 ≥ 13.806 kips (OK)

#### Beam Web Tear-out:

#### **Combined Tension and Shear**

Load Angle,  $\emptyset = Atn(H/V) = 51.466$  Degees A = Sin( $\emptyset$ ) = 0.7822 B = Cos( $\emptyset$ ) = 0.623

 $Ag = 3.141 \text{ in}^2$   $An = 2.541 \text{ in}^2$ 

#### Rupture:

$$\begin{split} & \ensuremath{\langle} \mathsf{Rn} = 0.75^* \ 0.18^* \ (\mathsf{A}/\ \mathsf{B})^* \ (-1 + (1 + (\mathsf{B}/\ \mathsf{A})^2 \ / \\ & 0.09)^{0.5} \ )^* \ \mathsf{An}^* \ \mathsf{Fu} \ / \ \mathsf{B} \\ & = 0.75^* \ 0.18^* \ (0.7822 \ / \ 0.623)^* \ (-1 + (1 + (0.623 \ / \ 0.7822)^2 \ / \ 0.09)^{0.5} \ )^* \ 2.541^* \ 65^* \ / \ 0.623 \\ & = 82.548 \ge 13.806 \ \mathsf{kips} \ \mathsf{(OK)} \end{split}$$

#### <u>Yielding:</u>

$$\begin{split} & \label{eq:rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_rescaled_resc$$

#### Block Shear:

Vertical (An1,Ft1) and Horizontal (An2,Ft2) Sections:

#### Pattern 2:

#### Adjusted Design Stress:

 $\begin{array}{l} \text{ft1} = 0.75^{\star}0.18^{\star} \left(\text{A} / \text{B}\right)^2 \,^{\star} \left(\text{-1} + (1 + (\text{B} / \text{A})^2 / \\ 0.09)^{0.5}\right)^{\star} \text{Fu} \\ = 0.75^{\star}0.18^{\star} \left(0.7822 / 0.623\right)^2 \,^{\star} \left(\text{-1} + (1 + \\ (0.623 / 0.7822)^2 / 0.09)^{0.5}\right)^{\star} 65 \\ = 25.412 \, \text{ksi} \end{array}$ 

Fv1 = ft1 * B / A = 25.412 * 0.623 / 0.7822 = 20.238 ksi

 $\begin{array}{l} \text{ft2} = 0.75^{\circ}0.18^{\circ} (\text{B/A})^2 \ \ (\text{-1} + (1 + (\text{A/B})^2 \ \text{/} \\ 0.09)^{0.5})^{\circ} \text{Fu} \\ = 0.75^{\circ}0.18^{\circ} (0.623 \ \text{/} \ 0.7822)^2 \ \ (\text{-1} + (1 + (0.7822 \ \text{/} \ 0.623)^2 \ \text{/} \ 0.09)^{0.5})^{\circ} \ \text{65} \\ = 18.385 \ \text{ksi} \end{array}$ 

Fv2 = ft2 * A / B = 18.385 * 0.7822 / 0.623 = 23.085 ksi

ØRn = (Fv1 * An1 + Ft2 * An2)/B = (20.238 * 0.6 + 18.385 * 0.6)/0.623 = 37.198 ≥ 13.806 kips (OK)

#### Plate Bending:

Net Area, An =  $2 \text{ in}^2$ Net Section Modulus, Sn =  $2.274 \text{ in}^3$ e =  $(tp+tw)/2 = (0.5 + 0.3) / 2 = 0.4 \text{ in}^2$ Stress = H/An + (Mo + V * (c + Lh))/Sn +  $6^*(H^*e/2)/(t^*An)$  = 10.8/2 + (0.162 + 8.6011 * (0.5 + 1.5))/2.274+ 6*(10.8 * 0.4/2)/(0.5*2) = 25.996 ≤ 0.9*Fy = 32.4 ksi OK

= 0 /2 + 6 * (0 * 0.4 / 2) / (0.5 * 2) + (8.6011 * 2 + 0.162) / 2.274

= H/An + 6*(H * ex/2)/(t*An)+(V*cx+Mom)/S

# Plate Buckling: Maximum Stress:

= 7.636 ksi

Design Bending Stress for Lateral Buckling:  $\begin{array}{ll} c=2 \text{ in.,} & ho=L=6 \text{ in.,} & 2c/ho=0.6667, \ \ K=2.5\\ m=(Fy\,/\,K)^{0.5}\,\,^*ho\,/\,(0.98\,^*E^{0.5}\,\,^*2\,\,^*tp)\\ &=(36\,/\,2.5)^{0.5}\,\,^*6\,/\,(0.98\,^*E\,^*2\,\,^*0.5) \end{array}$ = 0.1364O = 1ØFcr = 0.9*Fy * O = 0.9*36 * 1 = 32.4 > 7.636 ksi OK Compression Buckling of Plate: Using K = 1.2 and L = 2 in. r =  $t/(12^{0.5}) = 0.5/3.464 = 0.1443$  in. KL/r = 16.627  $Lc = KL/r * (Fy/E)^{0.5}/PI$ = 16.627 * (36/29000.)^{0.5}/3.1416 = 0.1865 For =  $0.658^{(Lc^2)*}$ Fy =  $0.658^{0.0348} * 36 = 35.48$  ksi Pn = Lp*t*Fcr = 6*0.5*35.48 = 108 kips Mu = Pu*e/2 = 0*0.4/2 = 0 k-in.  $Mn = Fy^*Lp^*t^2/4 = 36^*6 * 0.5^2/4 = 13.5 \text{ k-in}.$ Utilization Factor: Pu / (0.9 * Pn) < 0.2 Pu / (2*0.9*Pn) + Mu/(0.9*Mn) = 0 / (2*0.9 * 108) + 0 / (0.9 * 13.5)  $= 0 \le 1.0 \text{ OK}$ Plate to Column Weld: Weld Size = 0.1875 > Min. Weld Size = 0.1875 in. (OK) Weld Stresses:  $fr = [((H / L) + 6*Mo/L^2)^2 + (V/L)^2]^{0.5}$  $= [((10.8 / 6) + 6*0.162/6^2)^2 + (8.6011/6)^2]^{0.5}$ = 2.3223 kips/in. fraverage =  $[((H / L) + 3^{Mo}/L^2)^2 + (V/L)^2]^{0.5}$  $=[((10.8/6) + 3*0.162/6^2)^2 + (8.6011/6)^2]^{0.5}$ = 2.3117 kips/in. Required Weld Size = Max(fr; 1.25 * fraverage) / (0.75*0.6*1.414 * Fexx) = Max(2.3223; 1.25 * 2.3117) / (0.75*0.6*1.414 * 70) = 0.0649 ≤ 3/16 in. (OK) Useful weld size: = Min(0.75*0.6 * tp * Fup; 2 * 0.75*0.6 * tc * Fuc) / (0.75*0.6*1.414 * Fexx) = Min(0.75*0.6 * 0.5 * 58; 2 * 0.75*0.6 * 0.3 * 65) / (0.75*0.6*1.414 * 70) = 0.293 ≥ 0.0649 in. (OK)

Beam and Column Local Stresses for Left Side Beam

Beam Web Local Yielding:

Force from Bottom, Rbot =  $((1.73*HbBot)^2 + (VbBot+3MbBot/LBot)^2)^{0.5}$ =  $((1.73*5.7586)^2 + (3.8011+3*9.2405/10)^2)^{0.5}$  = 11.936 kips

Required Web Thickness = Rbot / (1 *Fy * (L+2.5*k)) = 11.936 / (1 * 50 *(10+2.5*0.81)) = 0.0199 in.  $\leq$  0.3 in. (OK)

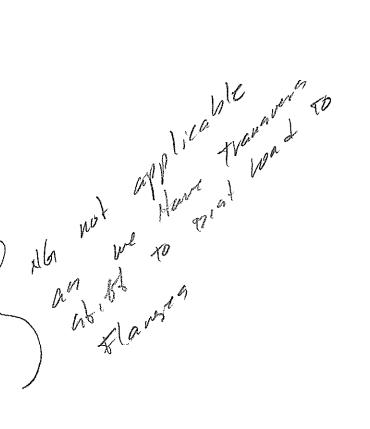
Beam Web Crippling:

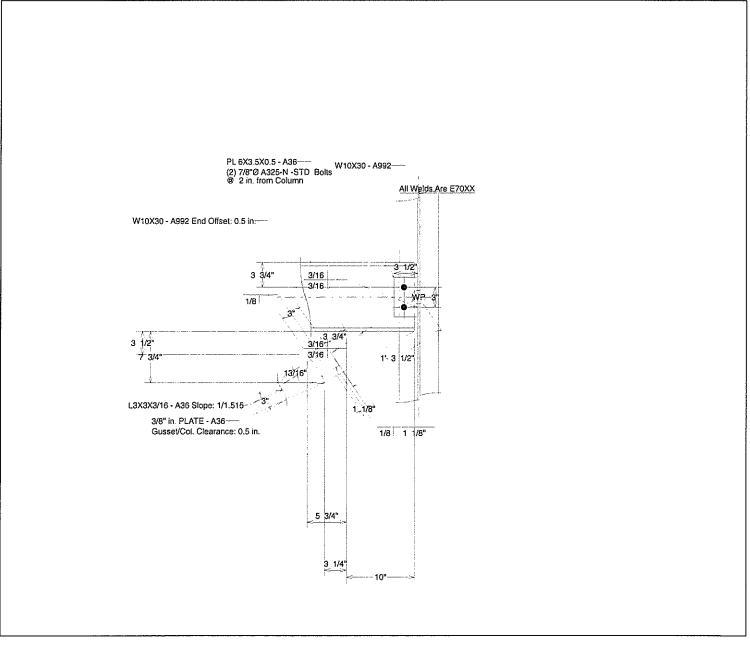
Force from Bottom, Rbot = VbBot+3MbBot/LBot = 3.8011+3*9.2405/10= 2.7722 kips Design Strength for Bottom Loading, ØRn: =  $0.75*0.4*E^{0.5}*$ tw²*(1+(4*(Nbot/d)-0.2)*(tw/tf)^{1.5})*(Fy*tf/tw)

tw² *(1+(4*(Nbot/d)-0.2)*(tw/tf)^{1.5})*(Fy*tf/tw)⁰. = 0.75* 0.4 * 170.3 * $0.3^2$  *(1+(4*(10/10.47)-0.2) *(0.3/0.51)^{1.5})*(50*0.51/0.3)^{0.5} = 111.6 kips ≥ 2.7722 kips (OK)

Column Web Bending and out of Plane Shear:

H = Fx/L = 10.8/ 6 = 1.8 kips/ in. Moment, M = H*Wc/4 = 1.8 * 8.85/ 4 = 3.9825 kip-in/in.


Bending Strength:


ØMn = 0.9 * Fy * tw² /4 = 0.9 * 50 * 0.3² /4 = 1.0125 < 3.9825 kip-in/in. (NG)

Shear Stress:

fv = H / (2*tw) = 1.8 / (2*0.3) = 3 ≤ Fv = 1 * 0.6*Fy = 1 * 0.6 * 50 = 30 ksi OK

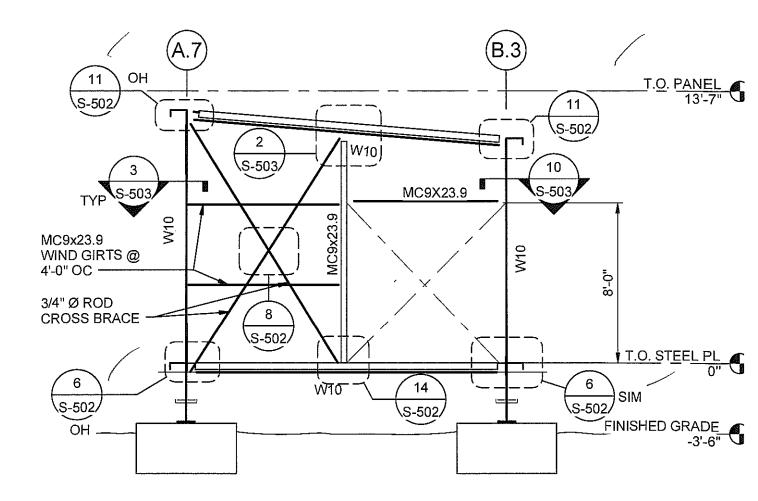
Design is incomplete or not satisfactory.



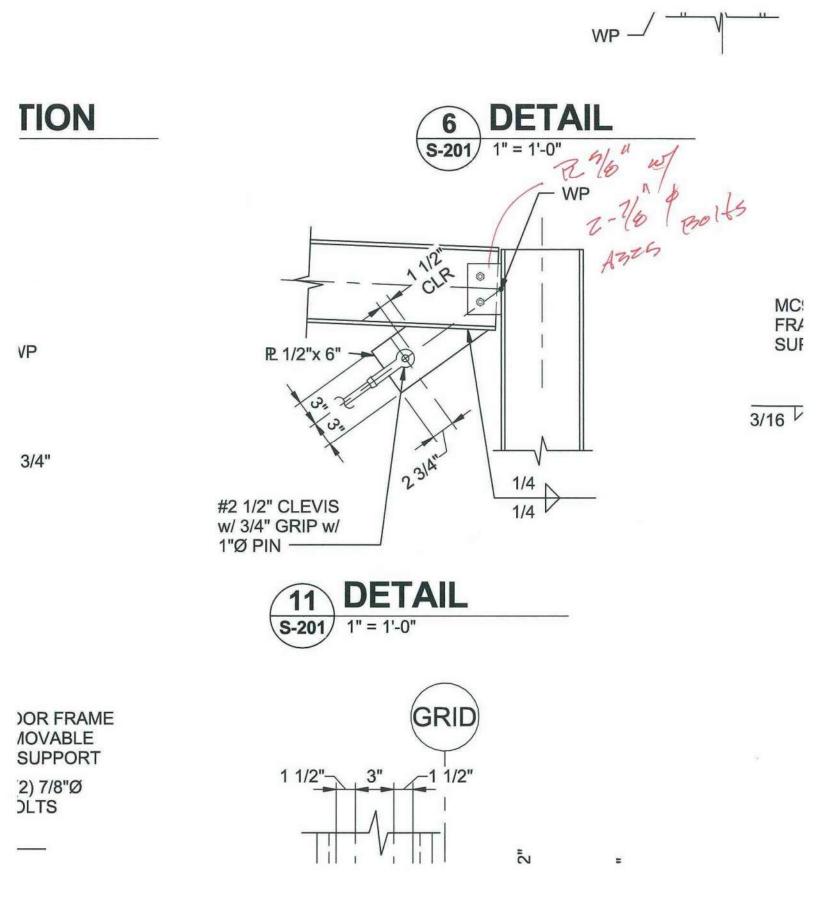


<u>Scale: 3/4" = 1'</u>




Date	Sheet of 178 of	
Contract	1481-77	

011-2010A


Cala		N1.m
Calcu	lation	NO.

oject Mindo	Revision	By	Date	Chk'd	Date
		185			
vfulsties					

2-14 1326 Connection Denign polts Vic Ø Kow= III K = 1.2(1.1)+ 15 V12= 15 K = 1.52 56=,736 10 11 T 12 Pu 13 Bu= 15 K =1.26.57+6627+1.66.37 14 Pus - lezk = 174 15 16 PWL = 13 K 17 18 19 The 20 PoL = ,94K = 1.2(.74) +1.17 +1.6(12.6 21 22 PLL = IITK = ZZ.SK 23 PWL = 12,6K 24 25 76 huar tub m 2-76 & 1325 Bolts Gae bollowing Brint USC 26 27 28 29 00 30 31 32 33 20 24 25 26 27 28



	ELEVATION
S-101	1/4" = 1'-0"



.

#### **BASIC DESIGN DATA**

#### Non-Seismic Design

Column: Size: W10X30 Material: A992 Orientation: Web In Plane Axial Force (Tension): 0 kips Axial Force (Compression): 0 kips Shear Force: 0 kips

#### Left Side Beam:

Size: W10X30 Material: A992 Axial Force (Tension): 12 kips Axial Force (Compression): 0 kips Shear Force: 1.8 kips Work Point X: 0 in. Work Point Y: 0 in.

#### Single Plate:

Length: 6 in. Material: A36 Bolts: 7/8"Ø A325-N -STD Bolt Vertical Spacing: 3 in. Bolt Vertical Edge Distance: 1.5 in. Bolt Horizontal Spacing: 3 in. Bolt Horizontal Edge Distance: 1.5 in.

Lower Left Brace: Size: L3X3X3/16

Length: 3 Ft

Matérial: A36 Axial Force (Tension): 22.5 kips Axial Force (Compression): 0 kips Work Point X: -5.25 in. Work Point Y: 0 in. Rise/Run: 1.94/1 Bolt Edge Distance: 1.5 in.

#### Gusset Plate:

Material: A36 Column Side Length: 10.47 in. Beam Side Length: 4.25 in. Brace Side Length: 4.4781 in. Column Side Free Edge: x= 3.1662 in., y= 7.5873 in. Beam Side Free Edge: x= 3 in., y= 5.75 in. Thickness: 0.375 in. Setback from Column: 0.5 in. Bolt Edge Distance: 1.5 in. Gusset-Brace Gap: -5.875 in.

#### Lower Left Brace to Gusset Connection

```
Brace Force = 22.5 kips
```

Brace to Gusset Weld Size = 1/8 in. Brace to Gusset Weld Length Along Heel of Angle = 5.875 in. Brace to Gusset Weld Length Along Toe of Angle = 2.2082 in. Weld Size =  $1/8 \ge Minimum$  Weld Size = 1/8 in. (OK) Weld Size =  $1/8 \le Maximum$  Weld Size = 3/16 in. (OK) Heel Weld: ØRn =  $\beta * 0.75*0.6^{\circ}$ Fexx*0.707*w*L =  $1*0.75*0.6^{\circ}$ To*0.707*0.125*5.875 = 16.355 kips

Toe Weld: ØRn = β */0.75*0.6*Fexx*0.707*w*L = 1*0.75*0.6*70*0.707*0.125*2.2082

ØRn = 0.9*Fy * Ag = 0.9 * 36 * 1.0898 = 35.311 ≥ 22.5 kips (OK)

Tension Rupture:

Shear Lag Factor U = 1-x/L = 1 - 0.8196/5.875 = 0.8605

Løwer Left Brace Gusset Dimensions:

Column Side, Lgc = 0 in. Beam Side, Lgb = 4.25 in. Beam Side Free Edge, Lvfx = 3 in. Beam Side Free Edge, Lvfy = 5.75 in. Column Side Free Edge, Lhfx = 3.1662 in. Column Side Free Edge, Lhfy = 7.5873 in.

#### Lower Left Brace Gusset Edge Forces:

Special case: 3

Gusset edge moments carried by: Beam interface

Theta = 27.269 Degrees, eb = 5.235 in. ec = (-0.015) in. Beta = 0 in. BetaBar = 0 in. AlphaBar = 2.625 in.

Alpha = (Beta + eb)*Tan(Theta) - ec = (0 + 5.235)*Tan(27.269) - (-0.015) = 2.7135 in.

#### With Tensile Brace Force:

 $\begin{array}{l} r = {\sf Fx} \; / \; (({\sf Alpha} + ec)^2 \; + \; ({\sf beta} + eb)^2 \; )^{0.5} \\ = 22.5 \; / \; ((2.7135 + (-0.015))^2 \; + \; (0 + 5.235)^2 \; )^{0.5} \\ = 3.8203 \; {\sf kips/in}. \end{array}$ 

Hb = Alpha * r = 2.7135 * 3.8203 = 10.309 kips

Hc = ec * r = (-0.015) * 3.8203 = 0 kips

Vb = eb * r = 5.235 * 3.8203 = 19.999 kips

Vc = beta * r = 0 * 3.8203 = 0 kips

Mb = |Vb * (Alpha - AlphaBar)| = |19.999 * (2.7135 - 2.625)| = 1.769 k-in.

Mc = 0

#### With Compressive Brace Force:

 $r = Fx / ((Alpha + ec)^2 + (beta + eb)^2)^{0.5}$  $= 0 / ((2.7135 + (-0.015))^2 + (0 + 5.235)^2)^{0.5}$ = 0 kips/in.

Hb = Alpha * r = 2.7135 * 0 = 0 kips

Hc = ec * r = (-0.015) * 0= 0 kips

Vb = eb * r = 5.235 * 0 = 0 kips

Vc = beta * r = 0 * 0 = 0 kips

Mb = 0

Mc = 0

#### Lower Left Brace Gusset Thickness

<u>Try t = 3/8"</u>

Maximum Brace Weld Force Gusset Can Develop: = 0.75 * 0.6*Fu*t*(L1+L2) = 0.75 * 0.6*58 * 0.375 * (5.875 + 2.2082)

= 0.75 + 0.658 + 0.375 + (5.875 + 2.20)= 79.114  $\ge$  22.5 kips (OK)

# Block Shear of Gusset at Brace:

 $Agv = Anv = 2^{L*t} = 2^{5.875*0.375} = 4.4063 in^{2}$ 

Agt = Ant = d*t = 3*0.375 = 1.125 in²

ØRn = 0.75 * (0.6 * Min(Fu * Anv;Fy * Agv) + Ubs * Fu * Ant) = 0.75 * (0.6*Min(58 * 4.4063; 36 * 4.4063) + 1 * 58 * 1.125) = 120.3 ≥ 22.5 kips (OK)

#### **Check Whitmore Section:**

Width1 = 1.1547*Lweld = 1.1547*5.875 = 6.7839 in. Width2 = 0.57735*(5.875 + 2.2082) + 3 = 7.6668 in. Width, Lw = Max(Width1;Width2) = 7.6668 in.

Lwo = 3.6795 in. of Lw is outside the gusset free edge.

Width of Whitmore Section inside gusset boundaries, Lwg = 3.9873 in.

Whitmore Section Stress:

Tension:

fa = Fx/(Lwg*t + Lwb*twb + Lwc*twc) = 22.5/(3.9873 * 0.375 + 0 * 0.3 + 0 * 0.3) = 15.048 ksi

Compression:

fa = Fx/(Lwg*t + Lwb*twb + Lwc*twc) = 0/(3.9873 * 0.375 + 0 * 0.3 + 0 * 0.3) = 0 ksi

#### Whitmore Section Yielding:

Design Strength = 0.9*(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc)

= 0.9*(3.9873 * 0.375 * 36 + 0 * 0.3* 50 + 0 * 0.3* 50) = 48.446 ≥ 22.5 kips (OK)

#### Lower Left Brace Gusset to Beam Connection

Horizontal Force on Welds, Hb = 10.309 kips

Vertical Force on Welds, Vb = 19.999 kips

Moment on Welds, M = 0 k-in.

Weld Length on Each Side of Gusset Plate, L = 4.25 in.

Average Force on Welds per Unit Length = fraverage =  $((V/L+3M/(L^2))^2 + (H/L)^2)^{0.5}$ =  $((19.999/4.25 + 3^* 0/(4.25^2))^2 + (10.309/4.25)^2)^{0.5}$ = 5.2941 kips/in.

fr = fraverage

Maximum useful weld size = 0.7072 * Fu* t / Fexx = 0.7072 * 58 * 0.375/70 = 0.2197 in.

Use Richard Factor, Rf = 1.25

#### Use 3/16 in. Weld

#### Left Side Beam to Column Connection

Transfer Force from Right = 0 kips Compression Transfer Force from Right = 0 kips Tension Transfer Force from Left = (-10.309) kips Compression Transfer Force from Left = 12 kips Tension

Vertical Force on Single Plate = V (Maximum Combined Force) = 21.799 kips

Horizontal Force on Single Plate = H (Maximum Combined Force) H (Tension)= 12 kips H (Compression)= 0 kips

#### **Design Single Plate**

Plate Length = 6 in. Plate Width = 3.5 in. Plate Thickness = 0.625 in. Bolts: (2)7/8"Ø A325-N -STD Bolt Holes on S. Plate:0.9375" Horiz. X 0.9375" Vert. Bolt Holes on Gusset:0.9375" Horiz. X 0.9375" Vert.

Bolt Vertical Spacing =  $3 \ge Min$ . Spacing = 2.3333 in. (OK)

Vert. Edge Dist. on S. Plate = 1.5 ≥ Min. Edge Dist. = 1.5 in. (OK)

Bolt Shear Strength:

Eccentricity, ex = 2.0083 in. (Includes the effect of Transfer Force Ecc.) Vertically: 2 Bolts with 3 in. Spacing Horizontally: 1 Bolts with 3 in. Spacing Resultant Load (24.884 kips) Inclined 28.832 Degrees from Vertical Inclined Eccentic Load Coefficient, C = 1.2085

 $\emptyset$ Rn = C*Fv = 1.2085 * 24.353 = 29.43  $\ge$  24.884 kips (OK)

#### <u>Bolt Bearing</u>

Vertical Load:

Required Weld Size, w = Max(Rf*f_avrg;f_peak)/(0.75*0.6*1.41*Fexx) = 6.6176/(0.75*0.6*1.41* 70) = 0.1486 in.

Bearing Strength/Bolt/Thickness Using Bolt Spacing = With Tensile Force Fbs Bolt Spacing = 3 in., Hole Size = 0.9375 in. = 0.75 * 1.2 * Lc * Fu ≤ 0.75 * 2.4 * d * Fu = 91.35 kips/in. = 0.75 * 1.2 * 2.0625 * 58 = 107.7 kips/in. Use: Fbs = 91.35 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbre Edge Dist. = 1.5 in., Hole Size = 0.9375 in. = 0.75 * 1.2 * Lc * Fu  $\leq$  0.75 * 2.4 * d * Fu = 91.35 kips/in. = 0.75 * 1.2 * 1.0313 * 58 = 53.831 kips/in. Equiv. Bolt Factor, ef = C/Nb  $\leq$  1 = 1.2085 / 2 = 0.6042 ØRn = ef * Nh*(Fbe + Fbs * (Ni - 1)) * t = 0.6042 * 1 * (53.831 + 91.35 * (2-1))*0.625 = 54.827 ≥ 21.799 kips (OK) Horizontal Load: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 0.9375 in. = 0.75 * 1.2 * Lc * Fu  $\leq$  0.75 * 2.4 * d * Fu = 91.35 kips/in. = 0.75 * 1.2 * 2.0625 * 58 = 107.7 kips/in. Use: Fbs = 91.35 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbre Edge Dist. = 1.5 in., Hole Size = 0.9375 in. = 0.75 * 1.2 * Lc * Fu < 0.75 * 2.4 * d * Fu = 91.35 kips/in. = 0.75 * 1.2 * 1.0313 * 58 = 53.831 kips/in. With Compressive Force: ØRn = ef * NI * Fbs * Nh * t = 0.6042 * 2 * 91.35 * 1 * 0.625  $= 68.996 \ge 0$  kips (OK) With Tensile Force: ØRn = ef * NI * (Fbe + Fbs * (Nh - 1)) * t = 0.6042 * 2 * (53.831 + 91.35 * (1 - 1)) * 0.625 = 40.658 ≥ 12 kips (OK) Bolt Bearing on Beam Web: Vertical Load: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 0.9375 in. = 0.75 * 1.2 * Lc * Fu < 0.75 * 2.4 * d * Fu = 102.4 kips/in. = 0.75 * 1.2 * 2.0625 * 65 = 120.7 kips/in. Use: Fbs = 102.4 kips/in. ØRn = ef * Nh*Fbs * NI * t = 0.6042 * 1 * 102.4 * 2 * 0.3 = 37.115 > 21.799 kips (OK) Horizontal Load: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 0.9375 in. = 0.75 * 1.2 * Lc * Fu < 0.75 * 2.4 * d * Fu = 102.4 kips/in. = 0.75 * 1.2 * 2.0625 * 65 = 120.7 kips/in. Use: Fbs = 102.4 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbre Edge Dist. = 1.5 in., Hole Size = 0.9375 in. = 0.75 * 1.2 * Lc * Fu < 0.75 * 2.4 * d * Fu = 102.4 kips/in. = 0.75 * 1.2 * 1.0313 * 65 = 60.328 kips/in.

ØRn = ef * NI * (Fbe + Fbs * (Nh - 1)) * t = 0.6042 * 2 * (60.328 + 102.4 * (1 - 1)) * 0.3 = 21.871 ≥ 12 kips (OK) With Compressive Force ØRn = ef * NI * Fbs * Nh * t = 0.6042 * 2 * 60.328 * 102.4 * 1 * 0.3 = 37.115 ≥ 0 kips (OK) Single Plate Combined Tension and Shear The following formulae have been derived using an interaction equation of the form  $ft/Ft + (fv/Fv)^2 = 1$ (Ref. "Combined Shear and Tension Stress", Subhash C. Goel, Engineering Journal, 3rd Q 1986, AISC). Load Angle,  $\emptyset$  = Atn(H/V) = 28.832 Degees  $A = Sin(\emptyset) = 0.4822$  $B = Cos(\emptyset) = 0.876$ Rupture: Net Area, An = (L - NI * (dv + 0.0625)) * t = (6 - 2 * (0.9375 + 0.0625)) * 0.625  $= 2.5 \text{ in}^2$  $\emptyset$ Rn = 0.75* 0.18 * (A/B) * (-1 + (1 + (B / A)² / 0.09)^{0.5}) * An * Fu / B = 0.75 * 0.18 * (0.4822 / 0.876) * (-1 + (1 + (0.876 / 0.4822)² / 0.09)^{0.5}) * 2.5 * 58 / 0.876 = 63.191 > 24.884 kips (OK) Yielding: Ag= L*t = 6 * 0.625 = 3.75 in²  $\begin{array}{l} (12) (0.5) * Ag * Fy/A \\ = 1^2 * 0.18 * (0.4822 / 0.876)^2 * (-1 / 0.9 + (1 / (0.9^2) + (0.876 / 0.4822)^2 / (0.09 * 1^2))^{0.5}) * 3.75 * 36/0.4822 \\ \end{array}$ = 77.039 ≥ 24.884 kips (OK) Block Shear: Vertical (An1,Ft1) and Horizontal (An2,Ft2) Sections: Pattern 1: An1 = (L - Lv - (NI - 0.5) * (dv + 0.0625)) * t

= (6 - 1.5 - (2 - 0.5) * (0.9375 + 0.0625)) * 0.625 = 1.875 in² An2 = (W - c - Lh - (Nh - 0.5) * (dh + 0.0625)) * t = (3.5 - 0.5 - 1.5 - (1 - 0.5) * (0.9375 + 0.0625)) * 0.625  $= 0.625 \text{ in}^2$ 

#### Adjusted Design Stress:

ft1 =  $0.75*0.18*(A/B)^2*(-1+(1+(B/A)^2/0.09)^{0.5})*Fu$ = 0.75*0.18 * (0.4822 / 0.876)² * (-1 + (1 + (0.876 / 0.4822)² / 0.09)^{0.5}) * 58 = 12.189 ksi

Fv1 = ft1 * B / A = 12.189 * 0.876 / 0.4822 = 22.143 ksi

ft2 =  $0.75^{\circ}0.18 * (B/A)^2 * (-1 + (1 + (A/B)^2 / 0.09)^{0.5}) * Fu$ =  $0.75^{\circ}0.18 * (0.876 / 0.4822)^2 * (-1 + (1 + (0.4822 / 0.876)^2 / 0.876)^2)$ 0.09)^{0.5}) * 58 = 28.158 ksi

Fv2 = ft2 * A / B = 28.158 * 0.4822 / 0.876 = 15.5 ksi

ØRn = (Fv1 * An1 + Ft2 * An2)/B = (22.143 * 1.875 + 28.158 * 0.625)/0.876 = 67.482 > 24.884 kips (OK)

#### Pattern 2:

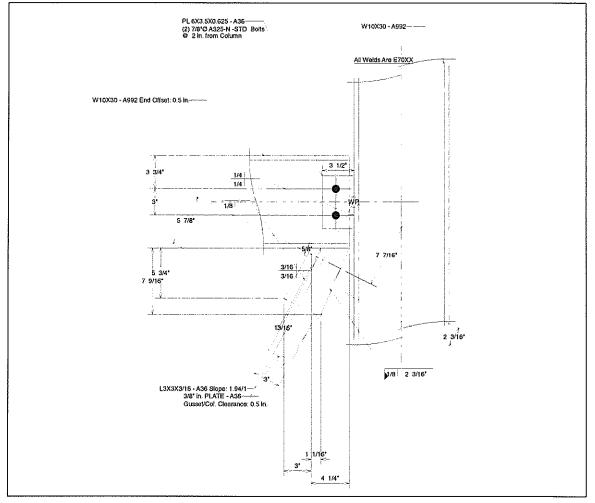
An1 = (L - 2*Lv - (NI - 0.5) * (dv + 0.0625)) * t

 $e = (tp+tw)/2 = (0.625 + 0.3) / 2 = 0.4625 in^2$ 

Stress = H/An + (Mo + V * (c + Lh))/Sn + 6*(H*e/2)/(t*An) = 12/2.5 + (0.18 + 21.799 * (0.5 + 1.5))/2.8425+ 6*(12 *

= (6 - 2*1.5 - (2 - 0.5) * (0.9375 + 0.0625)) * 0.625 = 0.9375 in² An2 = 2*(W - c - Lh - (Nh - 0.5) * (dh + 0.0625)) * t  $= 2^{*}(*3.5 - 0.5 - 1.5 - (1 - 0.5) * (0.9375 +$ 0.0625)) * 0.625 = 1.25 in² Adjusted Design Stress: (Same as Above) ØRn = (Fv1 * An1 + Ft2 * An2)/B = (22.143 * 0.9375 + 28.158 * 1.25)/0.876 = 63.875 > 24.884 kips (OK) Beam Web Tear-out: Combined Tension and Shear Load Angle, Ø = Atn(H/V) = 28.832 Degees  $A = Sin(\emptyset) = 0.4822$ B = Cos(O) = 0.876 $Ag = 3.141 \text{ in}^2$   $An = 2.541 \text{ in}^2$ Rupture: 0.09)^{0.5}) * An * Fu / B = 0.75 * 0.18 * (0.4822 / 0.876) * (-1 + (1 + (0.876 / 0.4822)² / 0.09)^{0.5} ) * 2.541 * 65 / 0.876 = 71.979 > 24.884 kips (OK) Yielding: 
$$\begin{split} & \emptyset \text{Rn} = 1^2 * 0.18 * (\text{A} / \text{B})^2 * (\text{-1} / 0.9 + (1 / (0.9^2) + (\text{B} / \text{A})^2 / (0.09 * 1^2))^{0.5}) * \text{Ag} * \text{Fy/A} \\ &= 1^2 * 0.18 * (0.4822 / 0.876)^2 * (\text{-1} / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9 + (1 / 0.9$$
 $(0.9^2) + (0.876 / 0.4822)^2 / (0.09 * 1^2))^{0.5})$ 3.141 * 50/0.4822 = 89.622 > 24.884 kips (OK) Block Shear: Vertical (An1,Ft1) and Horizontal (An2,Ft2) Sections: Pattern 2:  $Aq1 = 0.9 in^2$  $An1 = 0.6 in^2$   $Ag2 = 0.9 in^2$  $An2 = 0.6 in^2$ Adjusted Design Stress:  $ft1 = 0.75*0.18 * (A / B)^2 * (-1 + (1 + (B / A)^2 / C))^2$ 0.09)^{0.5}) * Fu  $= 0.75*0.18*(0.4822/0.876)^2*(-1+(1+))^2$  $(0.876 / 0.4822)^2 / 0.09)^{0.5}$ ) * 65 = 13.66 ksi Fv1 = ft1 * B / A = 13.66 * 0.876 / 0.4822 = 24.816 ksi ft2 = 0.75*0.18 * (B/A)² * (-1 + (1 + (A / B)² / 0.09)^{0.5}) * Fu = 0.75*0.18 * (0.876 / 0.4822)² * (-1 + (1 +  $(0.4822 / 0.876)^2 / 0.09)^{0.5}$ ) * 65 = 31.556 ksi Fv2 = ft2 * A / B = 31.556 * 0.4822 / 0.876 = 17.371 ksi ØRn = (Fv1 * An1 + Ft2 * An2)/B = (24.816 * 0.6 + 31.556 * 0.6)/0.876 = 38.609 > 24.884 kips (OK) Plate Bending:

Net Area. An =  $2.5 \text{ in}^2$ 


Net Section Modulus, Sn = 2.8425 in³

0.4625/2)/(0.625*2.5) = 30.858 < 0.9*Fy = 32.4 ksi OK Plate Buckling: Maximum Stress: = H/An + 6*(H * ex/2)/(t*An)+(V*cx+Mom)/S = 0 /2.5 + 6 * (0 * 0.4625 / 2) / (0.625 * 2.5) + (21.799 * 2 + 0.18) / 2.8425 = 15.402 ksi Design Bending Stress for Lateral Buckling:  $\begin{array}{ll} c = 2 \text{ in.,} & ho = L = 6 \text{ in.,} & 2c/ho = 0.6667, & K = 2.5 \\ m = (Fy / K)^{0.5} * ho / (0.98 * E^{0.5} * 2 * tp) \\ & = (36 / 2.5)^{0.5} * 6 / (0.98 * E * 2 * 0.625) \end{array}$ = 0.1091  $\Omega = 1$ ØFcr = 0.9*Fy * Q = 0.9*36 * 1 = 32.4 ≥ 15.402 ksi OK Compression Buckling of Plate: Using K = 1.2 and L = 2 in.  $r = t/(12^{0.5}) = 0.625/3.464 = 0.1804$  in. KL/r = 13.302  $Lc = KL/r * (Fy/E)^{0.5}/PI$ = 13.302 * (36/29000.)^{0.5}/3.1416 = 0.1492 $Fcr = 0.658^{(Lc^2)} + F_{1}$ = 0.658^{0.0223} * 36 = 35.666 ksi Pn = Lp*t*Fcr = 6*0.625*35.666 = 135 kips Mu = Pu*e/2 = 0*0.4625/2 = 0 k-in.  $Mn = Fy^{*}Lp^{*}t^{2}/4 = 36^{*}6^{*} 0.625^{2}/4 = 21.094 \text{ k-in.}$ Utilization Factor: Pu / (0.9 * Pn) < 0.2 Pu / (2*0.9*Pn) + Mu/(0.9*Mn)  $= 0 / (2^{\circ}0.9 + 135) + 0 / (0.9 + 21.094)$ = 0 ≤ 1.0 OK Plate to Column Weld: Weld Size = 0.25 > Min. Weld Size = 0.25 in. (OK) Weld Stresses:  $fr = [((H/L) + 6^{MO/L^2})^2 + (V/L)^2]^{0.5}$  $= [((12/6) + 6*0.18/6^2)^2 + (21.799/6)^2]^{0.5}$ = 4.1619 kips/in. fraverage = [((H / L) + 3*Mo/L²)² + (V/L)²]^{0.5} = [((12 / 6) + 3*0.18/6²)² + (21.799/6)²]^{0.5} = 4.1546 kips/in. Required Weld Size = Max(fr; 1.25 * fraverage) / (0.75*0.6*1.414 * Fexx) = Max(4.1619; 1.25 * 4.1546) / (0.75*0.6*1.414 * 70) = 0.1166 < 1/4 in. (OK) Useful weld size: = Min(0.75*0.6 * tp * Fup; 2 * 0.75*0.6 * tc * Fuc) / (0.75*0.6*1.414 * Fexx) = Min(0.75*0.6 * 0.625 * 58; 2 * 0.75*0.6 * 0.51 * 65) / (0.75*0.6*1.414 * 70) = 0.3662 > 0.1166 in. (OK)

Beam and Column Local Stresses for Left Side Beam

Beam Web Local Yielding:

Force from Bottom, Rbot =  $((1.73*HbBot)^2 + (VbBot+3MbBot/LBot)^2)^{0.5}$ =  $((1.73*10.309)^2 + 0.05)^{-1}$ (19.999+3*1.769/4.25)²)^{0.5} = 27.741 kips Required Web Thickness = Rbot / (1 *Fy * (L+2.5*k)) = 27.741 / (1 * 50 *(4.25+2.5*0.81)) = 0.0884 in. ≤ 0.3 in. (OK) Beam Web Crippling: Force from Bottom, Rbot = VbBot+3MbBot/LBot = 19.999+3*1.769/4.25 = 1.2487 kips Design Strength for Bottom Loading, ØRn: = 0.75* 0.4 * E^{0.5} *  $\begin{array}{l} & 0.75 & 0.4 \\ tw^2 * (1+(4^*(Mbot/d)-0.2)^*(tw/tf)^{1.5})^*(Fy^*tf/tw)^0 \\ & = 0.75^* \ 0.4 * 170.3 * 0.3^2 * (1+(4^*(4.25/10.47)-0.2) \\ * (0.3/0.51)^{1.5})^*(50^*0.51/0.3)^{0.5} \\ & = 0.10 \\ two = 0.10 \\$ = 69.619 kips > 1.2487 kips (OK) Column Web Local Yielding: Force from Beam, RColumn =  $(H^2 + (1.73^*V)^2)^{0.5}$ =  $((12)^2 + (1.73^*21.799)^2)^{0.5}$  = 39.576 kips Required Web Thickness = RColumn / (1 * Fy * (N+5*k)) = 39.576 / (1 * 50 * (6 + 5*0.81)) = 0.0788 in. ≤ 0.3 in. (OK) Column Web Crippling: Force from Beam, RColumn = 0 kips Design Strength, ØRn: = 0.75*0.8 * E^{0.5} *  $^{-0.73}_{\rm tw}$  (1+3*(N/d)*(tw/tf)^{1.5})*(Fy*tf/tw)^{0.5} = 0.75*0.8 * 170.3 * 0.3^2 *(1+3*(6/10.47) *(0.3/0.51)^{1.5})*(50*0.51/0.3)^{0.5} = 150.5 kips ≥ 0 kips (OK) 



Scale: 1" = 1'



Date 12/15 shelep of 178 of Contract 7481-77

011-2010A

Ca	culation No.	
νa	culation no.	

Subject Mc Min 20	Revision	Ву	Date	Chk'd	Date
		PF			
- Verlifires	······································				
					: .
	· · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Sizz Runphouse Fording	55				· · · · · · · · · · · · · · · · · · ·
	·····	···•			· · · · · · · · · · · · · · · · · · ·
,		· · · · · · · · · · · · · · · · · · ·	·		·
Pour = 19,400 # max	gan		1 <i>00</i> P	54	
Wax	VAL	•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	·····		····· {······		· · · · · · · · · · · · · · · · · · ·
min = (19,400) 5	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
tooding 2100	·····			· · · · · · · · · · · · · · · · · · ·	
$\frac{min}{tooling} = \frac{(19,400)^2}{3120}$ $= 3.04 \frac{12}{12}$	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
1 = 3.04 FE				·	: : 
2		· · · ·			·
Queek for uplite					
4		: : : i			
Pup = 6,700 #	.6-	bc + b	20		
5 PLp = 6,700 # MKX	· · · · · · · · · · · · · · · · · · ·	:	· · ·		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·			· · ·	
Assome 2-6" thick foot	24				
				· · ·	
(Area)(T)(150) = 6,700 #	<del>.</del>	= ₹	2.5)		• · · · · · · · · · · · · · · · · · · ·
		······································			
Area = 17.87 122	······································				*····
Area = $(7.87)^{2}$ $wrdtu = ((7.87)^{2}$	····· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··			· · · · · · · · · · · · · · · · · · ·	····· ··· ··· ··· ··· ··· ··· ··· · · ·
= 4.23 12			· · · · · · · · · · · · · · · · · · ·	******	
<b>6</b>	· · · · · · · · · · · · · · · · · · ·	•••••	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Trug 4-6 × A-6 × Z	1(				·····
				······	· · · · · · · · · · · · · · · · · · ·
too bing	· · · · · · · · · · · · · · · · · · ·	······································	·····	·-····	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		·····
	an a	1929-1974-1975-1979-1979-1974-1974-1974-1974-1974-1974			
	· · · · · · · · · · · · · · · · · · ·			1	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
1 2 3 4 5 5 7 8 9 10 11 12 13 14	15 16 17 18	3 19 20	21 22 23	24 25 26	27 28 29



Date 12/16 shelft of 178 of Contract 7431-77

011-2010A

Calculation No.

Subject Mc Mirrdo	Revision	By	Date	Chk'd	Date
	-	PF			
udilidies.	-				
	_				
1					
2 Check Gliding		······.		· · · · · · · · · · · · · · · · · · ·	
3		· · · · · · · · · · · · · · · · · · ·	:		
	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
5 7			· · · · ·		
· one = 9.8 E1PS	· · · · · · · · · · · · · · · · · · ·		: 		
7 Frame	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
8	· · · · · · · · · · · · · · · · · · ·			1	·
$\frac{1}{20} = \frac{1}{20} (2.0)^{2} (3)$	· · · · · · · · · · · · · · · · · · ·	4F=	2		
	· ······ · ····			: 	
$\frac{11}{12} = 720 \frac{4}{56}$		Y =	1200 th	523	
	· · · · · · · · · · · · · · · · · · ·			~····	·····
$\frac{13}{14} \frac{P_b}{b} = \frac{720}{2}$		9 =	. 39		•••••••••••••••••••••••••••••••••••••••
$\frac{14}{16} = -\frac{16}{20}$				 	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			·····		
		· · · · · · · · · · · · · · · · · · ·	···· {· · · ··· · ·		·····
			• • • • • • • • • • • • • • • • •		
18 Gliding Francic		······	: 	Eres dim	100000
20	· • · · · · · · · · · · · · · · · · · ·	······································			
P = (360)(50)(2) + (50)(2)	2.5)(150	1(.35	1-71	50 1:	36)
22	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ċ			
23	Fares 6143	• ••••••			· • • • • • • • • • • • • • • • • • • •
24			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
25 = 3600+3281+	2485			• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
$26$ $h \rightarrow i$ $\mu$					
27 = 1366 34	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
28 DUE= 9,800 . 1,02	mitte 1	in p	-76 0	ok	·
29			-	· · · · · · · · · · · · · · · · · · ·	
30 Aziele					· · · · · · · · · · · · · · · · · · ·
$\frac{1}{2}$	" For	binen		: : ::::::::::::::::::::::::::::::::::	
		<b>ر</b> : `	····		· · · · · · · · · · · · · · · · · · ·
33	15 15 17	10. 20		Q4 00 0-	
1 2 3 4 5 6 7 ^t 8 9 10 11 12 13 14	15 16 17 18	19· 20	21 22 23	24 25 26	27 28 29



Date [2/16 shelf? of 178 of Contract 7481-77

011-2010A

Calculation No.

Subject N. Murdo		Revision	By	Date	Chk'd	Date
ud, lities			-EF-			
		· · · ·	·	. :		· · · ·
Check Pad two	bing 5 tre	or Cerm	12			
			<u> </u>		· · · · · · · · · · · · · · · · · · ·	
	·····		· · · · · · · · · · · · · · · ·	· · · · ·		·····
$P_{tc} = 19, q +$	Allowa h	ele				
max	·····	· · · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·		· · ·	
Ru = 35,680	<del>(-</del>		· · · · · · · · · · · · · · · · · · ·	:	:	
o max			· · · · · · · · · · · · · · · · · · ·			
		γ, χ.	1 1			
2	5×5×=			~	· · · · · · · · · · · · · · · · · · ·	
3	ng 7-4		and the second			
4	HOLF	400	Folloz	as in		······
5	Bring	005		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
5		lang, pantang disegna pang di disepantan dalah di di Manang di Sang di Sang Mang di Sang di				e
7		······	· · · · · · · · · · · · · · · · · · ·			
8	: : :	·····			· · · · · · · · · · · · · · · · · · ·	
9 · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· 	·	· · · · · · · · · · · · · · · · · · ·		:
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	: : :			· · · · · · · · · · · · · · · · · · ·
1 : · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
2	· · · · · · · · · · · · · · · · · · ·				: 	
3	··· [ ···· · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••				
4	· · · · · · · · · · · · · · · · · · ·	······································	<u>i</u> <u>i</u>		· · · · · · · · · · · · · · · · · · ·	
5	en e					
		1	:		·····	·····
			· · · · · · · · · · · · · · · · · · ·			
\$ 	·····	· · · · · · · · · · · · · · · · · · ·	·····		·····	
• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		·····		· · · · · · · · · · · · · · · · · · ·	
	····	<u></u>		·····	· · · · · · · · · · · · · · · · · · ·	·
2					·····	
· · · · · · · · · · · · · · · · · · ·	، 	· · · · · · · · · · · · · · · · · · ·	- 	· · ·		·····
1 2 3 4 5 6 7 8 9 10	0 11 12 13 14	15 16 17 1	18 19 20	21 22 23	24 25 26	27 28 29



Date:	12/6/16	Sheet of
Project	No.:	7481-77
By:		PIF

							By:		PIF
SQUARE PAD	FOOTING	- CONCENT	RIC LOAD	· · · · · · ·	×.	-			
Job:		11 Ma	do v	filiti	125	]			
Location:				]					
		Pdead:	1.40 k		ftg weight?:	NO		Eloor live	e load factors
fe	5 ksi	PRLL:		inci		2100 psf	<b>1</b> f	f ₁ = 0.5	
	60 ksi		3.00 k			30 in	8	1= 0.0 1 ₂ = 0.2	
Tslab:		11.000 10000	20.00 k			60 in	1	2- 0.2	
	1.0 in		0.00 k			0 psf/ft			
Cx:	10.00 in	S or W?:				0 psf/ft			
cover:			Service	Ultimate		2100 psf			
Top Bars:		Pdl=	5.40 k	35.68 k	Soil den:				
Bottom Bars:	#6	Pdls=	19.40 k	35.68 k		1.000			
Tftg:	30 in	Pds=	0.84 k	0.00 k	Ø:	0°			
Round:	0%		Governing	Criteria	coh:	0.00 ksf			
Surcharge=	0 psf	-	Service	D+L+S			-		
Qded= (	0 psf		Ultimate	D+L+S					
D= 3	31 in								
Bdown= \$	5.00 ft		Footing:	5 ft - 0 in sq	uare by 30 ir	n thick			
Bup= \$	5.00 ft			No top bars	required.				
Bftg= 5	5.00 ft			-					
	0.78 ksf			With (7) #6	bottom bars	each way.			
	2.10 ksf			-					
Pu= 3				Quan	Unit cost	Total			
	1.43 ksf		Excavation:		100	\$239.20			
Mu+=			Concrete:		80	185.19			
Mu-= (	JTK		Steel:	95 lbs	1.25	118.28	-		
						\$542.67			
			Supporting d	lata				-	
Concrete		Moment		One-way sł	near	Two-way sh	ear		
beta1= 0	0.8	Ru=	0.0046	Vu=			23 k		
m= 1	14.12	rho req=	0.0001	bo=	60 in	bo=	= 144 in		
Fr= 2	230 psi		-	øVn=	165 k	øVn=	788 k		
b= 6	50	As=	2.79 in ²	Min num=	4				
dr= 2	25.88	Num=	7 bars	Idallow=	27.0 in	Bend dia=	4.50 in		
dn= 2	25.88	Asact=	3.08 in ²	hook?=	N	90 deg?=	: Y		
Sx= 1	121.50 in ³	ldb=	25.46 in	room?=	Y	Ext=	9		
rho max= 0	0.0314	spacing=	8.13 in	Lbar=	54.00 in	Lhook=	12.53 in		
rho min= 0	0.0018	ld=	18.48 in	wt=	6.76 lbs				
rho used= (	0.0020	lhb=	12.73 in	Fbb=	306 psi				
			8.08 in						
		Moment							
			0.0000						
		rho reqn=	0.0000						
			-						
		. added to a state	2.79 in ²	Min num=					
		Numn=		Idallow=		Bend dian=			
		Asactn=		hookn?=		90 degn?=			
			25.46 in	roomn?=		Extn=			
		spacingn=			54.00 in	Lhookn=	= 12.53 in		
		a second second	18.48 in		0.00 lbs				
		and the second second	12.73 in	Fbn=	U psi				
		Iann=	8.08 in						



Date 12/16 Shelof of 178 of 7481-77 Contract

011-2010A

Calculation No.

Subject Ne Mindo Date Chk'd Revision Bγ Date DF 2dilities Chuck Bane R & Anchorage a Pu= 35,68 Lips tour use 3/4" plate mere Fulloasing Print out check Aucharage bor uplift Ran = 6,700 t= Up Pu = 2(6,700) 4P = 13, 400 # = 13.4K Vmax = Sizk Allonable UNE 3/4 Base Plate M 4-3/4" & duehant Bolbs See follonsing Frind-ord Via = 2(5.2) = 10.4 K 



Date:	12/6/16	Sheet	105 of 178 of	
Merrick P	roject No.:	748	31-77	
A CONTRACT OF A	Children and a state of the sta			

Calculation No.:

alculation Title:	Me Mordo	
	1stilities	
	1 FILIFICI	

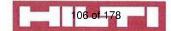
Rev.	Pre By	Date
	PIF	

RdI	1.4	k
RII	1	k
FII	3	k
Rw	20	k
Re	0	k
φ	0.9	
DL Coef	1.2	
RII Coef	0.5	
FII Coef	0.5	
Rw Coef	1.6	
Re Coef	-	
Ωo Coef	1	
A2	100	in^2
f'c	5	ksi

	W	Clm Type
d	9.00	in
bf	8.00	in
tf	0.44	in
Fy	30	ksi
Ult Load		
Pu	35.7	k
φPp	290	k
C	0K	-

Prelim PI	Area Req	
A1	2	in^2

A1	13	in^2
Δ	1.08	in
N	4.7	in
В	23.6	in


PI Area Use	d	
Use A1	110	in^2
N	11	in
В	10	in
n	2.00	in
m	2.00	in

Х	0.12	
$\lambda =$	0.362	<= 1
λ n'=	0.77	in

<b>Plate Thicl</b>	kness
ton	0.3

tpn	0.31	In
tpc	0.12	in
tpm	0.31	in

.77 in .31 in 3 UNE 3/4 Rate .12 in .31 in



#### Profis Anchor 2.7.1

#### www.hilti.us

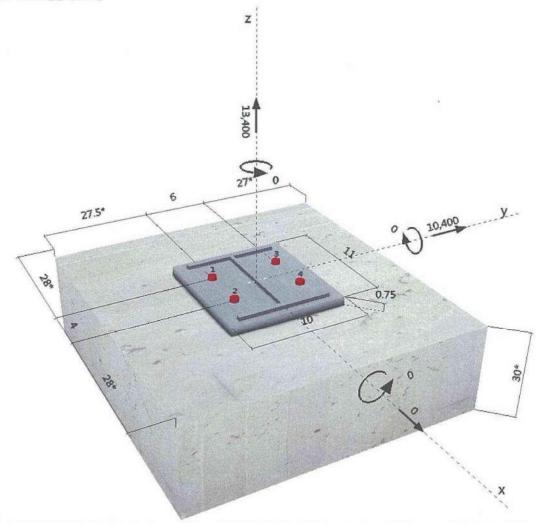
Company: Specifier: Address: Phone I Fax: E-Mail: Merrick PIF

L

#### Page: Project: Sub-Project I Pos. No.: Date:

McMurdo Utilities

12/6/2016


1

Specifier's comments:

# 1 Input data

Anchor type and diameter:	Hex Head ASTM F 1554 GR. 36 3/4
Effective embedment depth:	h _{ef} = 7.000 in.
Material:	ASTM F 1554
Proof:	Design method ACI 318-08 / CIP
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.750 in.
Anchor plate:	$l_x \times l_y \times t = 11.000$ in. x 10.000 in. x 0.750 in.; (Recommended plate thickness: not calculated
Profile:	W shape (AISC); (L x W x T x FT) = 9.730 in. x 7.960 in. x 0.290 in. x 0.435 in.
Base material:	cracked concrete, 5000, f _c ' = 5000 psi; h = 30.000 in.
Reinforcement:	tension: condition B, shear: condition B;
	edge reinforcement: none or < No. 4 bar
Seismic loads (cat. C, D, E, or F)	no

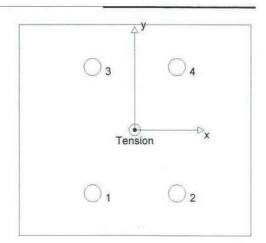
Geometry [in.] & Loading [lb, in.lb]



Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan



**Profis Anchor 2.7.1** 


#### www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail: Merrick PIF

#### Page: Project: Sub-Project I Pos. No.: Date:

2 McMurdo Utilities

12/6/2016



# 2 Load case/Resulting anchor forces

Load case: Design loads

#### Anchor reactions [lb]

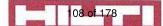
Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	3350	2600	0	2600
2	3350	2600	0	2600
3	3350	2600	0	2600
4	3350	2600	0	2600
max. concrete c resulting tensior	compressive strain: compressive stress: n force in (x/y)=(0.00 ession force in (x/y)=	-	[‰] [psi] 13400 [lb] ) [lb]	

# **3** Tension load

	Load N _{ua} [lb]	Capacity of Nn [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	3350	14529	24	OK
Pullout Strength*	3350	18312	19	OK
Concrete Breakout Strength**	13400	33675	40	OK
Concrete Side-Face Blowout, direction **	N/A	N/A	N/A	N/A

* anchor having the highest loading **anchor group (anchors in tension)


#### 3.1 Steel Strength

N _{sa}	= A _{se,N} f _{uta}	ACI 318-08 Eq. (D-3)
$\phi N_{sa}$	a ≥ N _{ua}	ACI 318-08 Eq. (D-1)

#### Variables

A _{se,N} [in. ² ]	f _{uta} [psi]
0.33	58000
Calculations	
N _{sa} [lb]	
19372	
Desults	

N _{sa} [lb]	φ steel	φ N _{sa} [lb]	N _{ua} [lb]
19372	0.750	14529	3350



#### www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

#### 3.2 Pullout Strength

N _{pN}	$= \psi_{c,p} N_p$	ACI 318-08 Eq. (D-14)
Np	$= 8 A_{brg} f_c$	ACI 318-08 Eq. (D-15)
	_N ≥ N _{ua}	ACI 318-08 Eq. (D-1)

#### Variables

Ψ c.p	A _{brg} [in. ² ]	f _c [psi]
1.000	0.65	5000
Calculations		
N _p [lb]		
26160		

Merrick

PIF

l

#### Results

N _{pn} [lb]	¢ concrete	φ N _{pn} [lb]	N _{ua} [lb]
26160	0.700	18312	3350

### 3.3 Concrete Breakout Strength

somet in the	
$N_{cbg} = \left(\frac{A_{Nc}}{A_{Nc}n}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-08 Eq. (D-5)
$\phi N_{cbg} \ge N_{ua}$	ACI 318-08 Eq. (D-1)
A _{Nc} see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)	
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-08 Eq. (D-6)
$\Psi_{ec,N} = \left(\frac{1}{1 + \frac{2e_N}{3h_{ef}}}\right) \le 1.0$	ACI 318-08 Eq. (D-9)
$\Psi_{ed,N} = 0.7 + 0.3 \left( \frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-08 Eq. (D-11)
$\psi_{\text{cp,N}} = \text{MAX}\left(\frac{c_{a,\min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-08 Eq. (D-13)
$N_{\rm b} = k_{\rm c} \lambda \sqrt{f_{\rm c}} h_{\rm ef}^{1.5}$	ACI 318-08 Eq. (D-7)

#### Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	Ψ c.N
7.000	0.000	0.000	27.000	1.000
- fin 1			6 5 - 27	
c _{ac} [in.]	k _c	h	f _c [psi]	
0.000	24	1	5000	

#### Calculations


A _{Nc} [in. ² ]	A _{Nc0} [in. ² ]	Ψ ec1.N	Ψ ec2.N	₩ ed.N	W cp.N	N _b [lb]
675.00	441.00	1.000	1.000	1.000	1.000	31430
Results						
N _{cbg} [lb]	¢ concrete	φ N _{cbg} [lb]	N _{ua} [lb]			
48107	0.700	33675	13400			

Page: Project: Sub-Project I Pos. No.: Date:

McMurdo Utilities

12/6/2016

3



www.hilti.us		Profis And	
Company:	Merrick	Page:	4
Specifier:	PIF	Project:	McMurdo Utilities
Address:		Sub-Project I Pos. No .:	
Phone I Fax: E-Mail:	I	Date:	12/6/2016

## 4 Shear load

	Load V _{ua} [lb]	Capacity & Vn [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	2600	7555	35	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	10400	67350	16	OK
Concrete edge failure in direction y+**	10400	39866	27	OK
* analysis having the highest leading **each	as any fasternation about			

* anchor having the highest loading **anchor group (relevant anchors)

## 4.1 Steel Strength

Vsa	= 0.6 A _{se,V} f _{uta}	ACI 318-08 Eq. (I	D-20)
$\phi V_{stee}$	el ≥ V _{ua}	ACI 318-08 Eq. (I	D-2)

### Variables

A _{se,V} [in. ² ]	f _{uta} [psi]
0.33	58000
Calculations	

#### Results

	V _{sa} [lb]	¢ steel	φ V _{sa} [lb]	V _{ua} [lb]
-	11623	0.650	7555	2600

### 4.2 Pryout Strength

$V_{cpg} = k_{cp} \left[ \left( \frac{A_{Nc}}{A_{Ncn}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-08 Eq. (D-31)
$\phi V_{cpg} \ge V_{ua}$	ACI 318-08 Eq. (D-2)
A _{Nc} see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)	
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-08 Eq. (D-6)
$\Psi_{ec,N} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$	ACI 318-08 Eq. (D-9)
$\Psi_{ed,N} = 0.7 + 0.3 \left( \frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-08 Eq. (D-11)
$\psi_{cp,N} = MAX \left( \frac{C_{a,min}}{C_{ac}}, \frac{1.5h_{ef}}{C_{ac}} \right) \le 1.0$	ACI 318-08 Eq. (D-13)
$N_{b} = k_{c} \lambda \sqrt{f_{c}} h_{ef}^{1.5}$	ACI 318-08 Eq. (D-7)

### Variables

k _{cp}	h _{ef} [in.]	e _{c1.N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]		
2	7.000	0.000	0.000	27.000		
Ψc.N	c _{ac} [in.]	k _c	λ.	f _c [psi]		
1.000	đ	24	1	5000		
Calculations						
A _{Nc} [in. ² ]	A _{Nc0} [in. ² ]	Ψ ec1,N	Ψ ec2,N	Ψ ed.N	Ψ cp,N	N _b [lb]
675.00	441.00	1.000	1.000	1.000	1.000	31430
Results						
V _{cpg} [lb]	¢ concrete	φ V _{cpg} [lb]	V _{ua} [lb]			
96214	0.700	67350	10400	0		

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan



Company:	Merrick	Page:	5
Specifier:	PIF	Project:	McMurdo Utilities
Address:		Sub-Project I Pos. No .:	
Phone I Fax:	I	Date:	12/6/2016
E-Mail:	,		

#### 4.3 Concrete edge failure in direction y+

$V_{cbg} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-08 Eq. (D-22)
$\phi V_{cbg} \leq V_{ua}$	ACI 318-08 Eq. (D-2)
$A_{Vc}$ see ACI 318-08, Part D.6.2.1, Fig. RD.6.2.1(b) $A_{Vc0}$ = 4.5 $c_{a1}^2$	ACI 318-08 Eq. (D-23)
$\Psi_{ec,V} = \left(\frac{1}{1 + \frac{2e_v}{3c_{a1}}}\right) \le 1.0$	ACI 318-08 Eq. (D-26)
$\psi_{ed,V} = 0.7 + 0.3 \left( \frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-08 Eq. (D-28)
$\psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-08 Eq. (D-29)
$V_{b} = \left(7 \left(\frac{l_{e}}{d_{a}}\right)^{0.2} \sqrt{d_{a}}\right) \lambda \sqrt{f_{c}} c_{a1}^{1.5}$	ACI 318-08 Eq. (D-24)

Variables

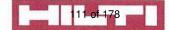
www.hilti.us

ca1 [in.]	C _{a2} [in.]	e _{cV} [in.]	W c.V	h _a [in.]
20.000	28.000	0.000	1.000	30.000
l _e [in.]	λ	d _a [in.]	ŕ _c [psi]	W parallel V
6.000	1.000	0.750	5000	1.000

### Calculations

Ave [in.2]	Avco [in.2]	V/ ec,V	₩ ed,V	Ψh.V	V _b [lb]
1800.00	1800.00	1.000	0.980	1.000	58113
Results					
V _{cbg} [lb]	¢ concrete	φ V _{cbg} [lb]	V _{ua} [lb]		
56951	0.700	39866	10400		

## 5 Combined tension and shear loads


ß	BN	βv	ζ	Utilization B _{N,V} [%]	Status
0.3	398	0.344	5/3	39	OK

 $\beta_{NV} = \beta_{N}^{\leq} + \beta_{V}^{\leq} \le 1$ 

## 6 Warnings

- Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the loading! Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- . Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!

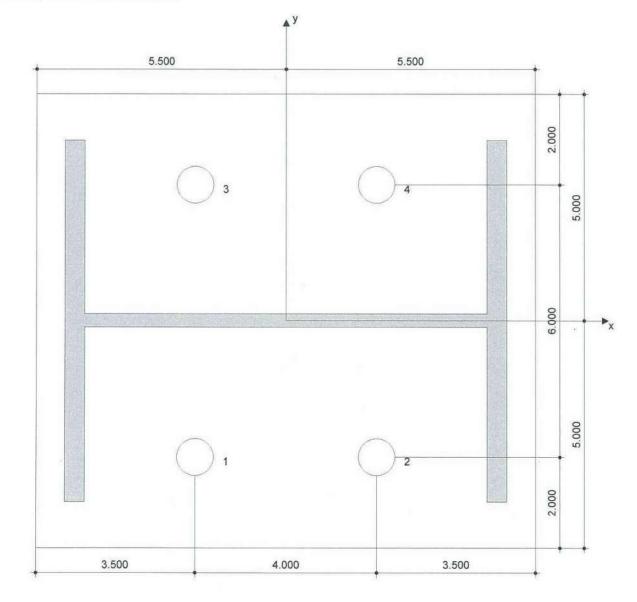
## Fastening meets the design criteria!



www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail: Merrick PIF Page: Project: Sub-Project I Pos. No.: Date:

McMurdo Utilities


12/6/2016

6

## 7 Installation data

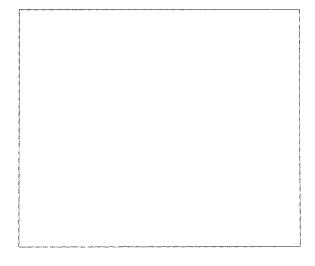
Anchor plate, steel: -

Profile: W shape (AISC); 9.730 x 7.960 x 0.290 x 0.435 in. Hole diameter in the fixture:  $d_f = 0.813$  in. Plate thickness (input): 0.750 in. Recommended plate thickness: not calculated Drilling method: -Cleaning: No cleaning of the drilled hole is required Anchor type and diameter: Hex Head ASTM F 1554 GR. 36 3/4 Installation torque: -Hole diameter in the base material: - in. Hole depth in the base material: 7.000 in. Minimum thickness of the base material: 8.000 in.



#### Coordinates Anchor in.

х	У	C.x	C+x	C_y	C+y
-2.000	-3.000	28.000	32.000	27.500	33.000
2.000	-3.000	32.000	28.000	27.500	33.000
-2.000	3.000	28.000	32.000	33.500	27.000
2.000	3.000	32.000	28.000	33.500	27.000
	2.000	2.000 -3.000 -2.000 3.000	-2.000-3.00028.0002.000-3.00032.000-2.0003.00028.000	-2.000-3.00028.00032.0002.000-3.00032.00028.000-2.0003.00028.00032.000	-2.000         -3.000         28.000         32.000         27.500           2.000         -3.000         32.000         28.000         27.500           -2.000         3.000         28.000         32.000         33.500


Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.us			Profis Anchor	2.7.1
Company:	Merrick	Page:	7	
Specifier:	PIF	Project:	McMurdo Utilities	
Address:		Sub-Project I Pos. No .:		
Phone I Fax:	I	Date:	12/6/2016	
E-Mail:				

## 8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
  regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
  the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case
  by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or
  programs, arising from a culpable breach of duty by you.

Project Name: Me Mondo stilitiza



Location: Mc Merdo By: PFinley

Start Date: 10/31/2016

Comments:

Node BUD

..\DESIGN - DATA\Calcs\Structural\Node Building.wls

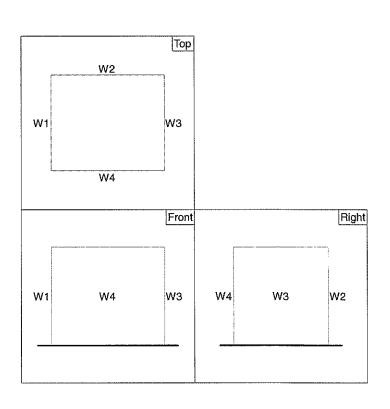
# Local Information

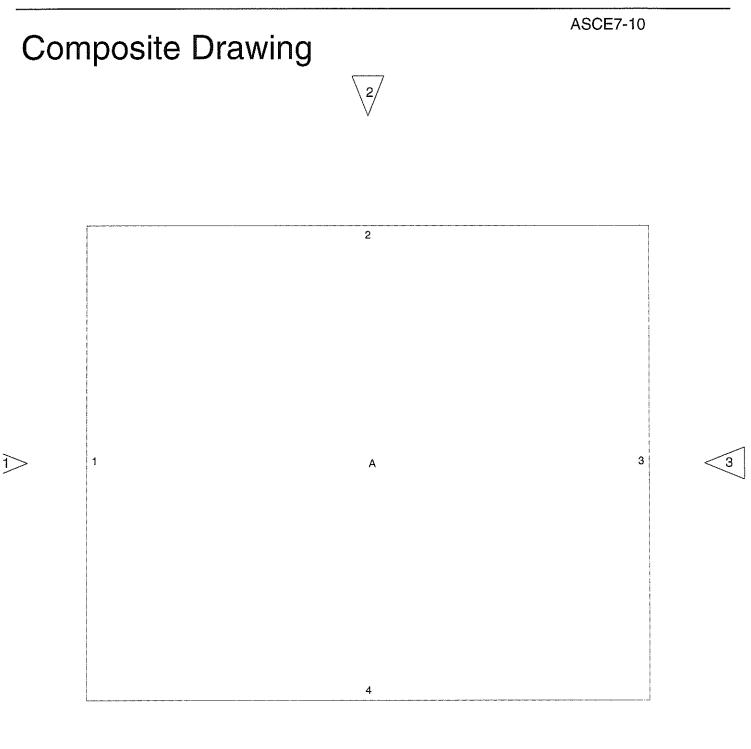
Wind Dir.	Exposure
1	D
2	D
3	D
4	D

Basic Wind Speed: 180 mph

Topography: None

# **Optional Factors**


This project uses load combinations from ASCE 7.


# Section - Main Section

Enclosure Classification: Enclosed

## Wall Length(ft) Overhang(ft)

1	10.66	0.	0
2	12.66	0.	0
3	10.66	0.	0
4	12.66	0.	0
		F	
Eave H	leight:	11	ft
Parape	et Height:	0	ft
Parape	et Enclosur	e: Sol	id
Roof S	hape: Fla	at	





## **MWFRS Net Pressures**

39.8       65.9         -59.3       -33.2         -43.5       -17.3         -59.3       -33.2
-43.5 -17.3
-59.3 -33.2
-92.3 -66.2
-62.6 -36.5
-56.0 -29.9
-25.0 1.2
ſ

## **MWFRS Net Pressures**

Surface	z (ft)	q (psf)	G	Ср	GCpi	Ext Pres (psf)	Net w/ +GCpi	(psf) Net w/ -GCpi	(psf)
Side Wall	11.0	72.6	0.91	-0.70	0.18	-46.2	-59.3	-33.2	
Windward Wall	11.0	72.6		0.80		52.9	39.8	65.9	
Side Wall	11.0	72.6	0.91	-0.70	0.18	-46.2	-59.3	-33.2	
Leeward Wall	11.0	72.6	0.91	-0.50	0.18	-33.0	-46.1	-20.0	
Roof	0 to 5.5 *	72.6	0.91	-1.30	0.18	-85.9	-99.0	-72.8	
	5.5 to 10.7 *	72.6		-0.70		-46.2	-59.3	-33.2	
	0 to 10.7 *	72.6		-0.18		-11.9	-25.0	1.2	
is load case 1 in	ASCE 7-10 Figu	re 27.4-8	3. See	Figure	e 27.4-	8 for other case	es.		
	Side Wall Windward Wall Side Wall Leeward Wall Roof	Side Wall       11.0         Windward Wall       11.0         Side Wall       11.0         Leeward Wall       11.0         Roof       0 to 5.5 *         5.5 to 10.7 *         0 to 10.7 *	Side Wall       11.0       72.6         Windward Wall       11.0       72.6         Side Wall       11.0       72.6         Leeward Wall       11.0       72.6         Roof       0 to 5.5 *       72.6         0 to 5.5 *       72.6         0 to 10.7 *       72.6	Side Wall         11.0         72.6         0.91           Windward Wall         11.0         72.6            Side Wall         11.0         72.6         0.91           Leeward Wall         11.0         72.6         0.91           Leeward Wall         11.0         72.6         0.91           Roof         0 to 5.5 *         72.6         0.91           5.5 to 10.7 *         72.6         0.91           0 to 10.7 *         72.6         0.91	Side Wall         11.0         72.6         0.91         -0.70           Windward Wall         11.0         72.6         0.91         -0.70           Side Wall         11.0         72.6         0.91         -0.70           Leeward Wall         11.0         72.6         0.91         -0.70           Leeward Wall         11.0         72.6         0.91         -0.70           Roof         0 to 5.5 *         72.6         0.91         -0.50           Roof         0 to 5.5 *         72.6         0.91         -1.30           0 to 10.7 *         72.6         -0.70         0 to 10.7 *         -0.18	Side Wall11.072.60.91-0.700.18Windward Wall11.072.60.91-0.700.18Side Wall11.072.60.91-0.700.18Leeward Wall11.072.60.91-0.500.18Roof0 to $5.5^*$ 72.60.91-1.300.185.5 to $10.7^*$ 72.6-0.700 to 10.7*72.6-0.18	Side Wall       11.0       72.6       0.91       -0.70       0.18       -46.2         Windward Wall       11.0       72.6       0.80       52.9         Side Wall       11.0       72.6       0.91       -0.70       0.18       -46.2         Leeward Wall       11.0       72.6       0.91       -0.70       0.18       -46.2         Leeward Wall       11.0       72.6       0.91       -0.70       0.18       -46.2         Roof       0 to 5.5 *       72.6       0.91       -0.50       0.18       -33.0         Roof       0 to 5.5 *       72.6       0.91       -1.30       0.18       -85.9         0 to 10.7 *       72.6       -0.70       -46.2         0 to 10.7 *       72.6       -0.18       -11.9	Side Wall       11.0       72.6       0.91       -0.70       0.18       -46.2       -59.3         Windward Wall       11.0       72.6       0.80       52.9       39.8         Side Wall       11.0       72.6       0.91       -0.70       0.18       -46.2       -59.3         Side Wall       11.0       72.6       0.91       -0.70       0.18       -46.2       -59.3         Leeward Wall       11.0       72.6       0.91       -0.50       0.18       -33.0       -46.1         Roof       0 to 5.5 *       72.6       0.91       -1.30       0.18       -85.9       -99.0         5.5 to 10.7 *       72.6       -0.70       -46.2       -59.3	Side Wall       11.0       72.6       0.91       -0.70       0.18       -46.2       -59.3       -33.2         Windward Wall       11.0       72.6       0.80       52.9       39.8       65.9         Side Wall       11.0       72.6       0.91       -0.70       0.18       -46.2       -59.3       -33.2         Side Wall       11.0       72.6       0.91       -0.70       0.18       -46.2       -59.3       -33.2         Leeward Wall       11.0       72.6       0.91       -0.70       0.18       -46.2       -59.3       -33.2         Leeward Wall       11.0       72.6       0.91       -0.50       0.18       -33.0       -46.1       -20.0         Roof       0 to 5.5 *       72.6       0.91       -1.30       0.18       -85.9       -99.0       -72.8         5.5 to 10.7 *       72.6       -0.70       -46.2       -59.3       -33.2         0 to 10.7 *       72.6       -0.18       -11.9       -25.0       1.2

## **MWFRS Net Pressures**

#	Surface	z (ft)	q (psf)	G	Ср	GCpi	Ext Pres (	psf) Net w/ +GCpi	(psf) Net w/ -GCpi (	(psf)
1	Leeward Wall	11.0	72.6	0.91	-0.46	0.18	-30.4	-43.5	-17.3	
2	Side Wall	11.0	72.6		-0.70		-46.2	-59.3	-33.2	
3	Windward Wall	11.0	72.6	0.91	0.80	0.18	52.9	39.8	65.9	
4	Side Wall	11.0	72.6	0.91	-0.70	0.18	-46.2	-59.3	-33.2	
Ą	Roof	0 to 5.5 *	72.6	0.91	-1.20	0.18	-79.3	-92.3	-66.2	
		5.5 to 11.0 *	72.6		-0.75		-49.5	-62.6	-36.5	
		11.0 to 12.7 *	72.6		-0.65		-42.9	-56.0	-29.9	
		0 to 12.7 *	72.6		-0.18		<b>-1</b> 1.9	-25.0	1.2	

## **MWFRS Net Pressures**

١	Wind Direction	4							
#	Surface	z (ft)	q (psf)	G	Ср	GCpi	Ext Pres (psf)	Net w/ +GCpi (psf)	Net w/ -GCpi (psf)
1	Side Wall	11.0	72.6	0.91	-0.70	0.18	-46.2	-59.3	-33.2
2	Leeward Wall	11.0	72.6		-0.50		-33.0	-46.1	-20.0
3	Side Wall	11.0	72.6	0.91	-0.70	0.18	-46.2	-59.3	-33.2
4	Windward Wall	11.0	72.6	0.91	0.80	0.18	52.9	39.8	65.9
A	Roof	0 to 5.5 *	72.6	0.91	-1.30	0.18	-85.9	-99.0	-72.8
		5.5 to 10.7 *	72.6		-0.70		-46.2	-59.3	-33.2
		0 to 10.7 *	72.6		-0.18		-11.9	-25.0	1.2
This	is load case 1 in	ASCE 7-10 Figu	re 27.4-8	3. See	Figure	e 27.4-	8 for other case	es.	
* Dis	tance from windv	vard edge.							



Date  $\frac{10}{3}$   $\frac{3}{5}$   $\frac{121}{5}$  of  $\frac{178}{5}$  of Contract  $\frac{7481-77}{7}$ 

011-2010A

ibject Mc Mor 20	Revision	Ву	Date	Chk'd	Date
		FF			
Utilities					
<b>V</b>					

Node BLD Dimes #Amoune Risk Cat III V= 186 mpt wind 12-8" Kd = , 89 13 KZE=1.0 Plan kz = 1.03 q= ,00296 L. 899 (1) (1,03) (1802 = 72,6 past straugh = 43.6 pat allowable  $\Pi$ 

**MERRICK**[®] & COMPANY

**Engineering Calculation Sheet** 

011-2010A

Date 10/3 / 122 of 178 Sheet of

7031-71 Contract

Calculation No.

Mr. Mur 200 Subject Revision Date Chk'd Βv Date P4= stilities check of & uplith for FND beargn 92 pro 11 M = 40(10.66) (11) + 44(10.66) X11) Z 9 10 + 92(10,66)(12,66) 11 12 6M5) = 76.660 #-96 allowable 13 14 12-5" 16 17 18 19 20 V_== 40 (11) (10.66) 21 22 + 44/10,667(1) Uplit + Horce No Foundation 23 = 9850 # strongth 24 = 5910 # allowable E= 76,660/12.66 25 26 = 6,055 # UP 27 28 Fz = 40 (10.66)(11)² + 44 (10.66)(11)² - 92(10.66)(12.66)² Z 29

12.66

= 1929 # UP

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

30 31

32 33

1



## **Engineering Calculation Sheet**

Date 10/3 | 123 of 178 Sheet of

7481-77

011-2010A

Contract

Calculation No. No Min do Subject Revision Date Chk'd Date By Fifizs 12'-5" Check Loads tranquerse in the Pirection 99 201 з M = 12.66 (40) (11) 96 PSI +46612,66×117 + 99 (12.66) (10.66) 2 40 port μ = 137,682 #-46 Abrenet "6Mb = 32,249 #-St allowable F = 82,249, /10.66 10-8" 7716 # UP  $F_{2} = 12.44 (40) (1)^{2} + 46 (1240) (1)^{2} - 99 (12.46) (10.66)^{2}$ 10.4 F2 = 501 # UP V= 40(12,66)(1) + 46(12,66)(1) = 11,976 # strength = 7186 # alloweakste 



Date 1/61 sheet of 178 of Contract 74-81-27

011-2010A

Subject MCMUNDO	Revision	Ву	Date	Chk'd	Date
		Ro			
stituties					

hive Pad Foundations vac z' thick Footings (2) (150) (X) (. (10) = 7716/2 + + d  $\chi = \dot{a}$ Ose fixix i-6" thick min trad tradings for uplift Use Friction & Fassing  $\frac{1929}{2} = \frac{926}{186}$  V' = 7186/4= 1800 # 7A" Essive pressure  $P_{b} = 120(2.0)^{2}(3)$ = 720 #/46 7=120 #/523 \$=,35 51,ding いっと うキ= こ、0 Fb/ = (720/2) = 366 \$ 



125 of 178 Sheet of Date 1 77 14-81-Contract

011-2010A

Subject New Jo	Revision	Ву	Date	Chk'd	Date
		RF			
Utotitis					
· · · · · ·	·				

$$\frac{311 \text{ dive terreference}}{r=360(\text{d}) + (\text{d}^2(2)(150)(.50)(.25) - 965}$$

$$= 2155 \pm \text{ per footing why a foot a footing s
$$r=360(\text{d})$$

$$= 1440 \pm \text{ pur footing for a toolings}$$

$$Y_{+} = 2(2155) \pm 2(1440)$$

$$= 7190 \pm 71766 \pm \text{ depear}$$

$$052 = \frac{1}{4} \times \frac{1}{4} \times \frac{2}{3} - 6^{11} \text{ prick}$$

$$1000 \text{ bing 5 for Klode}$$

$$E000005$$$$



011-2010A

126 of 178 Sheet of

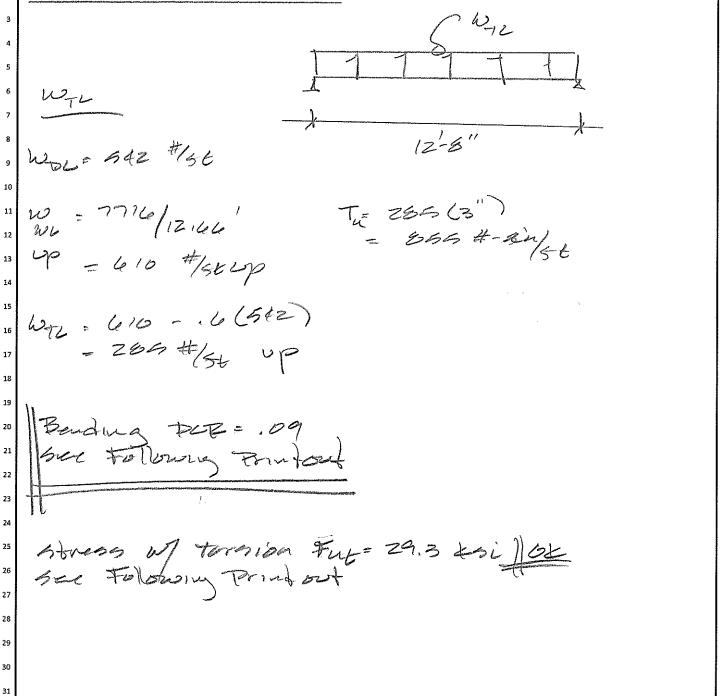
Contract

Date

Calculation No. Subject Revision Date Chk'd Вγ Date GIEC BM'S For Node FSCD もし PI wri ß B) WTL Eart 125 25 (10,66) + 25 (11) +25 (10,66/2) to wall Floor 12-6" = 542 the 102 = EDO (10,14/2) = 267 #14t M₁₂ = (542+267)(12,66) = 16,188 #-56 -Jown ward force = 16,2 &- 36 allowspla 



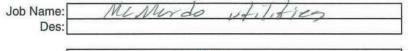
## **Engineering Calculation Sheet**


011-2010A

sheet of 178 of

<u>Contract</u>

Date


Subject	Revision	Bv	Date	Chk'd	Date
				···	
		1 1		· · · · · · · · · · · · · · · · · · ·	
check to m for uplight					
course from bor of all					





	128 o	f 178	
Date: 11/7/2016	Sheet	of	
Project No .:	7481-77		
By:	PIF		

## BEAM LOADS AND ANALYSIS - STEEL WIDEFLANGE BEAMS



Fy:	50 ksi		
E:	29000 ksi		
L:	12.7 ft	Beam Length	
Lb:	12.7 ft	unbraced length	
		- Sector Alexandra - Sector Alexandra - Sector Alexandra	

#### Applied Loads

Mappl = 5.71 k-ft	
Mu = 9.1  k-ft	
$\phi = 0.9$	
D max = 1 in	
D est = 0.03 in	
Ireq = 6 in4	estimate

## **Member Properties**

TRY:	W10X30
Sx=	32.4 in ³
lx=	170.0 in4
ly=	16.7 in4
Zx=	36.6 in ³
d=	10.47 in
h =	8.60 in
J	0.62 in
Cw	414.0 in
ry	1.374 in
ho	9.96 in
tf =	0.51 in
bf =	5.81 in
tw =	0.30 in
rts =	1.60

<b>Check Flexura</b>	Compact	t Requirements
----------------------	---------	----------------

Flang  $\lambda = b/(2^{*}tf) = 5.70$   $\lambda p = .38^{*}sqrt(E/Fy) = 9.15$   $\lambda r = 1^{*}sqrt(E/Fy) = 24.08$   $b/t <= .38^{*}sqrt(E/Fy) =$  Member is Compact Web  $\lambda = h/tw = 28.7$   $\lambda p = 3.76^{*}sqrt(E/Fy) = 90.6$   $\lambda r = 5.7^{*}sqrt(E/Fy) = 137.3$  $h/t <= 3.76^{*}sqrt(E/Fy) =$  Member is Compact

#### Lengths

.

Lp = 4.9  ft	
Lr = 16.1 ft	
Cb: 1	
Fcr = 48.8 ksi	



Date: 11/7/2016	Sheet	129 of 178 of
Project No .:	7481-77	
Bv:	PIF	

STRENGTH Compact   S						
lf Lb<=Lp						
Mp =	152.5 k-ft		=Fy*Z	ĸ		(eq F2-1)
φMn =	137.3 k-ft					
lf Lp < Lb <:	= Lr					
Mn =	112.4 k-ft		=Cb(M	lp-(Mp	.7*Fy*Sx)*((Lb-Lp)/(Lr-Lp))) <=Mp	(eq F2-2)
φMn =	101.2 k-ft					
lf Lb > Lr						
Mn =	131.7 k-ft		=Fcr*S	6x <= M	q	(eq F2-3)
φMn =	118.5 k-ft					
Non-compa	ct flanges					
Mn =	165.9 k-ft		=Cb(N	lp-(Mp	.7*Fy*Sx)*((λb-λp)/(λr-λp))) <=Mp	(eq F3-1)
φMn = 1	149.3 k-ft					
Slender Fla	nges					
kc = (						
Mn =	1623.1 k-ft		=.9*E*	kc*Sx /	λ^2	(eq F3-2)
φMn = 1	1460.8 k-ft					
Member is (	Compact					
Lp < Lb <= l						
USE	(eq F2-2)					
φMn =	101.2 k-ft	DCR =	0.09	OK	Strength Design	
$Mn/\Omega =$	67.3 k-ft	DCR =	0.08	OK	Allowable Stress Design	

L=	12.66	ft	
E =	29000	ksi	
Cw =	414	in^6	
G =	11200	ksi	
J =	0.62	in^4	
a =	41.58	in	
Qf =	7.09	in^3	Need get these from tables in Design Guide in the appendix
Qw =	18.3	in^3	
Sw1 =	10.7	in^4	
Wno =	14.5	in^2	
Tu =	-0.855	Kip-in/ft	
L/a =	3.654		
tu(L)/(G*J) :	-0.002		This has to change based on type of torsion
tw	0.3		
tf	0.51		
x = \$\phi\$ = x1 = \$\phi'\$ = x2 = \$\phi'\$ = X3 = \$\phi''\$ =	0.25 -0.0089 0 -0.5 6.16E-05 0 0.00E+00		Need to determine these from tables in Design Guide in the appendix For Mid Span
$\tau t =$		ksi	Web Shear Stress Stresses at Mid Span
τ W =	0.00		Flange Shear Stress / Warping
$\sigma \omega =$	25.89		Normal Stress / Warping
$\sigma px =$	3.37	KSI	1
Location Mid Span F	lange	σ ω ksi 25.9	σ b ksi Fut ksi 3.4 29.3
H .	101.20	2)	27 1- Kai > 29.3 Kai

Bu · 101.202) = 37.40 Kai > 29.3 Kai 32.4 = 37.40 Kai > 29.3 Kai **MERRICK**[°] & COMPANY **Engineering Calculation Sheet** 

Date 11/16 131 of 178 Sheet of

Contract 7451-71

011-2010A

Calculation No.

ubject	Me Man do	Revision	By Plan	Date	Chk'd	Date
	Utilityes					
				· · · · · · · · · · · · · · · · · · ·	 	
a	uk otility Been	t Design	••••••••••••••••••••••••••••••••••••••			·····
			Fr (	12 4 DF.	off Fi	· · · · · · · · · · · · · · · · · · ·
V=	180 mp H	Vaner		2		
Warn d						
3.9	z, $z$ ,	$\sum_{i=1}^{n}$				
: 	×VC	τu				
K J	= 95					: · · · · [· · · · · · · · · · · · ·
	, = LD			···· • <del>.</del>		
	, l.03			· · · · · · · · · · · · · · · · · · ·		
or =	·00256 (1.037 (DC.95	1(180)	4	3 mer		
9,=	\$1.0 port streng	<u>-</u>			1	
<b>y</b>			Be	· · · · · · · · · · · · · · · · · · ·		
#6 (C	2) - 48,7 7254 al	low a le			······································	······
F- 6	2 G CS AS (2ª	2.5-1)		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
1					· · · · · · · · · · · · · · · · · · · ·	4 · · · · · · · · · · · · · · · · · · ·
Arges	ume cz = u u			· · · £ · · · 4· · · ·	•••••••	
Vere	43 - 3		· ···· ··· ··· ··· ··· ··· ··· ··· ···			
						· · · · · · · · · · · · · · · · · · ·
··········				· · · · · · · · · · · · · · · · · · ·	1	:
Ŧ=	48.7(D(.5)(X5	~	· · · · · · · · · · · · · · · · · · ·			· · · ·
	39 (AF) Pod	· · · · · · · · · · · · · · · · · · ·	·········			
	· · · · · · · · · · · · · · · · · · ·					

## **Engineering Calculation Sheet**

Date 11/16 Sheet of

011-2010A

Contract 7481-77 Calculation No.

Mr. Mundo Revision By Date Chk'd Date Subject +P# Assigna 10' aprecing of Earts & what is the max their allowed * vere 2.5" warnes of water w= 50 \$1/36 Assume another 10 \$1/3 TPipe W,= (60)(2)(10) 井 いろしの井 V= 260 1 V= (39)(10)(14/12) = 520 # * but petlection to K/100 Max Harque allowed set at l'above grade. Use 7 for analysis assuming Acour Zone 



Date:	3/29/17	Sheet	of	
Project No.:				
By:	PIF			

### FLAGPOLE COLUMN AND CAISSON

	McMurdo Utilit Single Rack	ies	]
h: Passive:	and the second	A= 1.9 ft^2 S1= 667 psf S3= 2000 psf	S1 < Passive Pressure x 15, OK
-	CARL SHERE ALL AND A	SP= 6362 psf d= 4.62 ft M = 1632	Frank Soil Bearing #-ft Smin 5' combedment #-ft 1866.3.9
E: Ireq= USE=	0.72 in 35 ksi 29000 ksi 1.6207 in^4 PIPE 3 STD 3X3X1/8	3 USE 3 4 TUBE STEEL	#-It 1866.3.4 Per IBCT POUBLE Banaive Pressure = 200 pit to 400 pct

Single Each Support set theight to le max une 3/2\$ extra strong Pipe see Following Cale for Capacity Cale

basic load combinations of Section 1605.3.2 that include wind or earthquake loads.

**1806.2 Presumptive load-bearing values.** The load-bearing values used in design for supporting soils near the surface shall not exceed the values specified in Table 1806.2 unless data to substantiate the use of higher values are submitted and *approved*. Where the *building official* has reason to doubt the classification, strength or compressibility of the soil, the requirements of Section 1803.5.2 shall be satisfied.

Presumptive load-bearing values shall apply to materials with similar physical characteristics and dispositions. Mud, organic silt, organic clays, peat or unprepared fill shall not be assumed to have a presumptive load-bearing capacity unless data to substantiate the use of such a value are submitted.

**Exception:** A presumptive load-bearing capacity shall be permitted to be used where the *building official* deems the load-bearing capacity of mud, organic silt or unprepared fill is adequate for the support of lightweight or temporary structures.

**1806.3 Lateral load resistance.** Where the presumptive values of Table 1806.2 are used to determine resistance to lateral loads, the calculations shall be in accordance with Sections 1806.3.1 through 1806.3.4.

**1806.3.1 Combined resistance.** The total resistance to lateral loads shall be permitted to be determined by combining the values derived from the lateral bearing pressure and the lateral sliding resistance specified in Table 1806.2.

**1806.3.2 Lateral sliding resistance limit.** For clay, sandy clay, silty clay, clayey silt, silt and sandy silt, in no case shall the lateral sliding resistance exceed one-half the dead load.

**1806.3.3 Increase for depth.** The lateral bearing pressures specified in Table 1806.2 shall be permitted to be increased by the tabular value for each additional foot (305 mm) of depth to a maximum of 15 times the tabular value.

**1806.3.4 Increase for poles.** Isolated poles for uses such as flagpoles or signs and poles used to support buildings that are not adversely affected by a  $\frac{1}{2}$ -inch (12.7 mm)

motion at the ground surface due to short-term lateral loads shall be permitted to be designed using lateral bearing pressures equal to two times the tabular values.

### SECTION 1807 FOUNDATION WALLS, RETAINING WALLS AND EMBEDDED POSTS AND POLES

**1807.1 Foundation walls.** Foundation walls shall be designed and constructed in accordance with Sections 1807.1.1 through 1807.1.6. Foundation walls shall be supported by foundations designed in accordance with Section 1808.

**1807.1.1 Design lateral soil loads.** Foundation walls shall be designed for the lateral soil loads set forth in Section 1610.

**1807.1.2 Unbalanced backfill height.** Unbalanced backfill height is the difference in height between the exterior finish ground level and the lower of the top of the concrete footing that supports the foundation wall or the interior finish ground level. Where an interior concrete slab on grade is provided and is in contact with the interior surface of the foundation wall, the unbalanced backfill height shall be permitted to be measured from the exterior finish ground level to the top of the interior concrete slab.

**1807.1.3 Rubble stone foundation walls.** Foundation walls of rough or random rubble stone shall not be less than 16 inches (406 mm) thick. Rubble stone shall not be used for foundation walls of structures assigned to *Seismic Design Category* C, D, E or F.

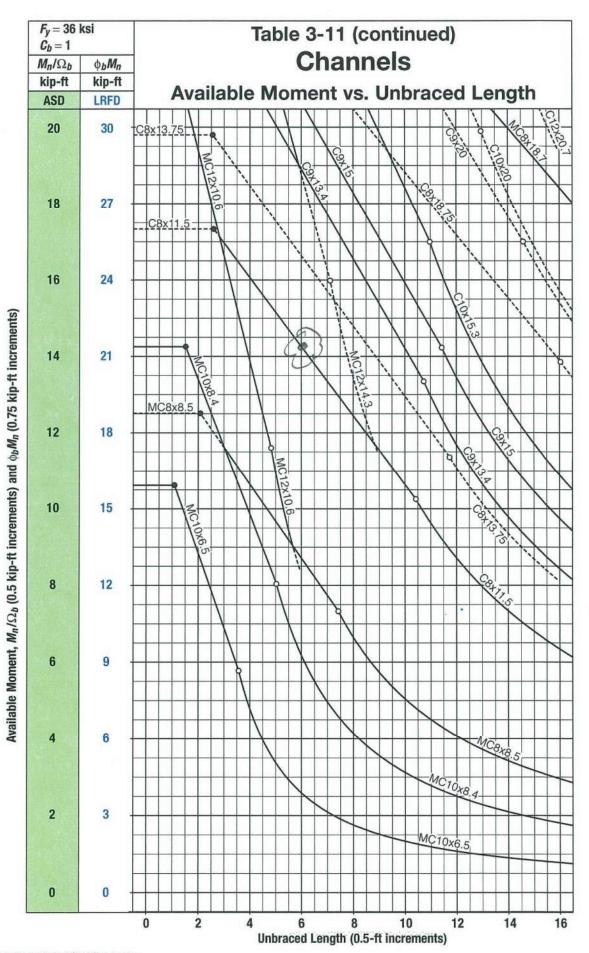
**1807.1.4 Permanent wood foundation systems.** Permanent wood foundation systems shall be designed and installed in accordance with AWC PWF. Lumber and plywood shall be treated in accordance with AWPA U1 (Commodity Specification A, Use Category 4B and Section 5.2) and shall be identified in accordance with Section 2303.1.9.1.

	VERTICAL FOUNDATION	LATERAL BEARING	LATERAL SLIDING	G RESISTANCE
CLASS OF MATERIALS	PRESSURE (psf)	PRESSURE (psf/ft below natural grade)	Coefficient of friction ^a	Cohesion (psf) ^b
1. Crystalline bedrock	12,000	1,200	0.70	_
2. Sedimentary and foliated rock	4,000	400	0.35	
3. Sandy gravel and/or gravel (GW and GP)	3,000	200	0.35	
<ol> <li>Sand, silty sand, clayey sand, silty gravel and clayey gravel (SW, SP, SM, SC, GM and GC)</li> </ol>	2,000	150	0.25	—
5. Clay, sandy clay, silty clay, clayey silt, silt and sandy silt (CL, ML, MH and CH)	1,500	100	_	130

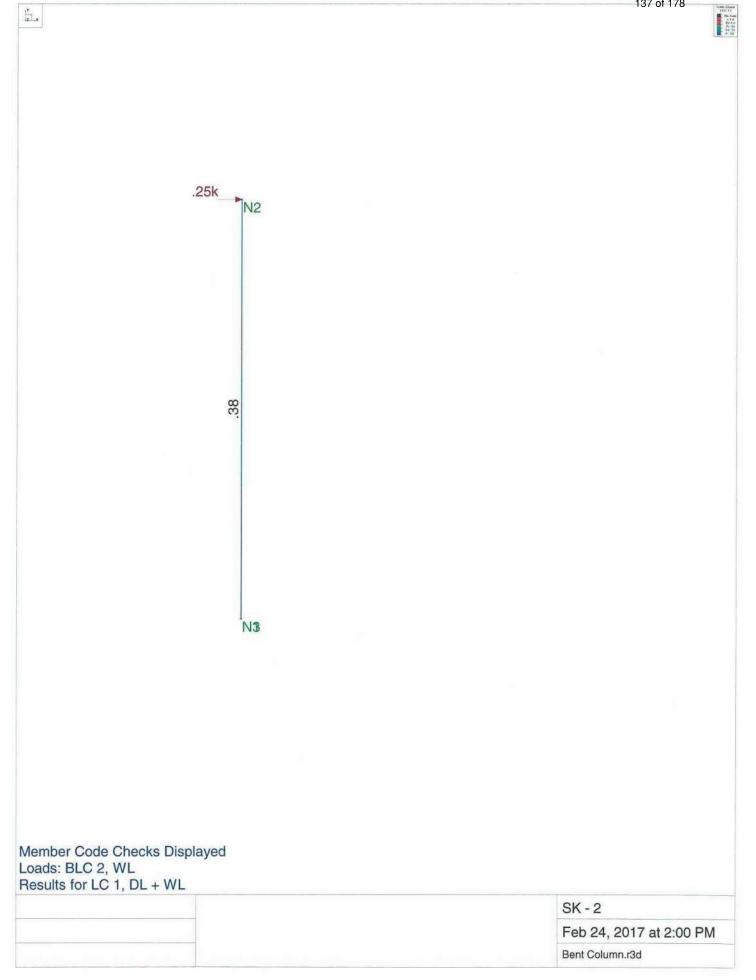
#### TABLE 1806.2 PRESUMPTIVE LOAD-BEARING VALUES

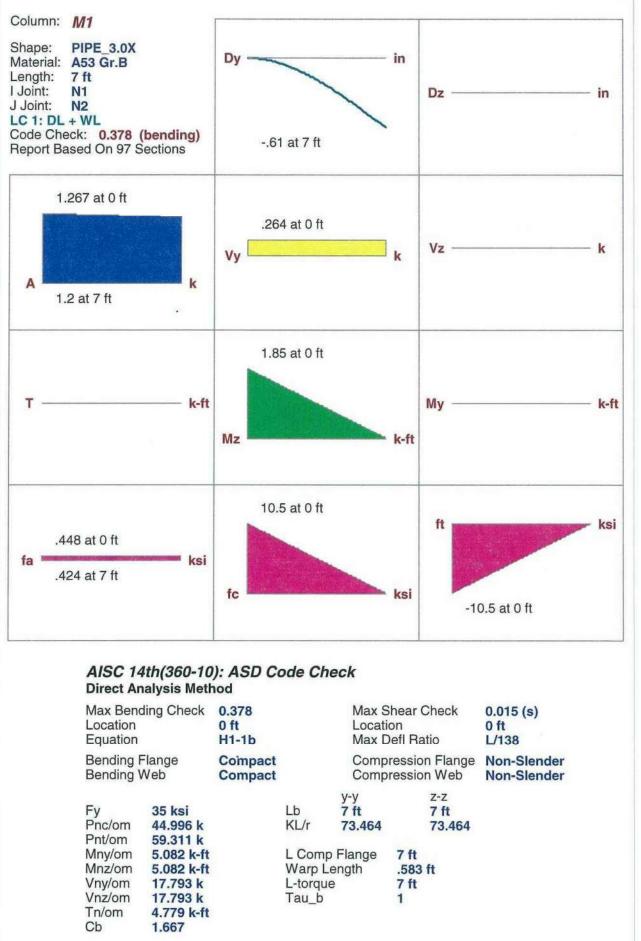
For SI: 1 pound per square foot = 0.0479kPa, 1 pound per square foot per foot = 0.157 kPa/m.

a. Coefficient to be multiplied by the dead load.


b. Cohesion value to be multiplied by the contact area, as limited by Section 1806.3.2.

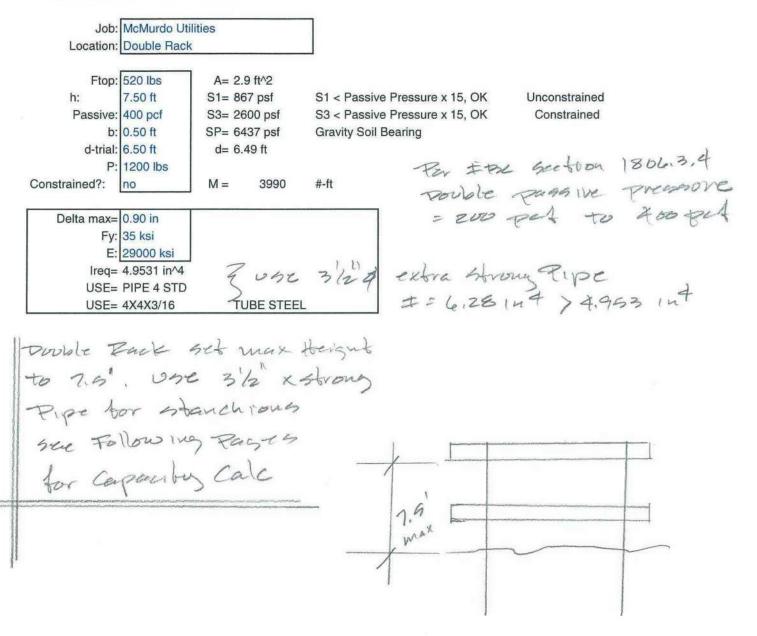
Licensee=Merrick and Co/3879400001, User=Burnett, Ryan Not for Resale, 09/22/2015 08:52:07 MDT **Engineering Calculation Sheet** 


011-2010A


135 of 178 Sheet Date ろ of 7481-77 Contract

ibject <u>MeMurda</u>	utilities	Revision	By Date	Chk'd	Date
Cuck Bent M = 400(B) ² B = 4,800 #		<u>k</u>	Levo M	15E V 5	
Main = 14 k-	56 JBE Ger Fellou Frand och	ey 1	8' for C5!	·····	
Check 3" Pipe Hauch		V= ZLEO H	12400 ⁴		
1212=138	sue Print out			1	



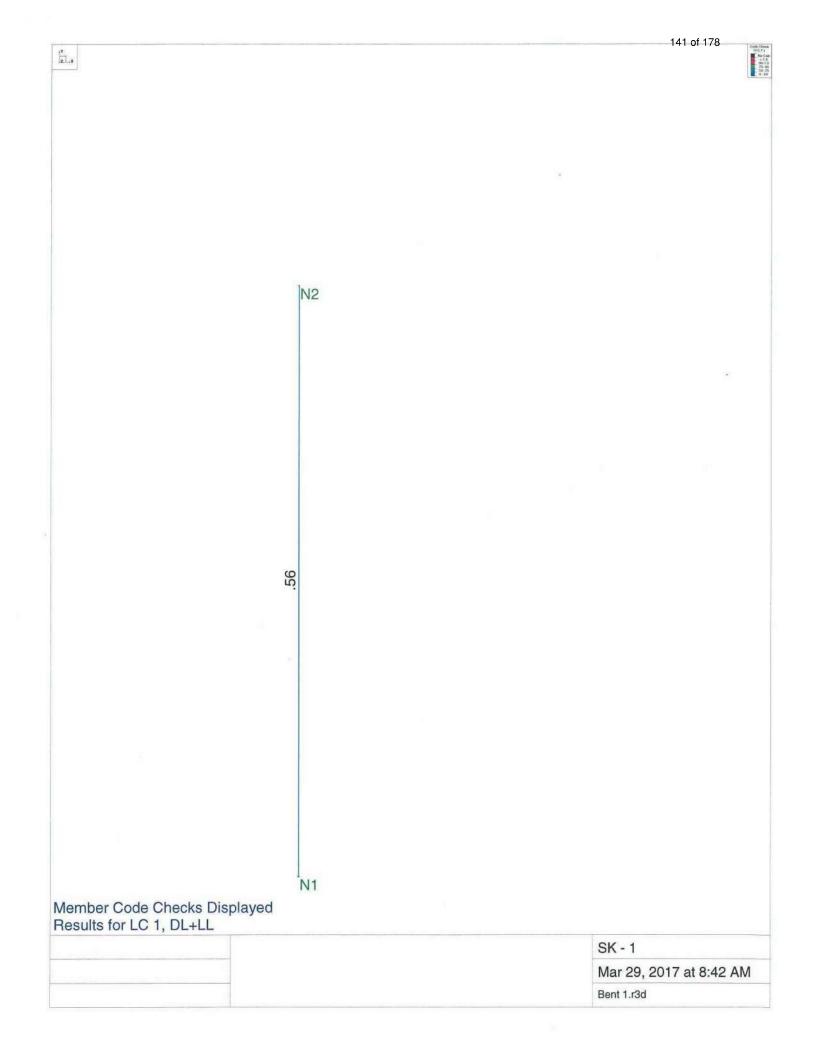

Copyright American Institute of Steel Construction Provided by IHS under license with AISC AMERICAN INSTITUTE C Licensee=Merrick and Co/3879400001, User=finley, patrick No reproduction or networking permitted without license from IHS Not for Resale, 05/08/2012 10:18:43 MDT

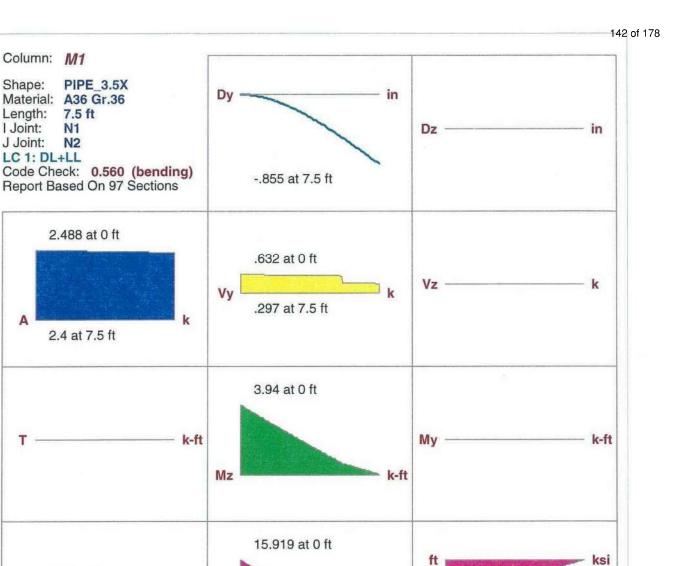






### FLAGPOLE COLUMN AND CAISSON




Date 3/29 Shadep of 178 of Contract 7481-77

011-2010A

Subject Me	NNA-U				By		Chk'd	Date
util	ities				08			
						· · ·		
toulde	e Rack	<u></u>			· · · · · · · · · · · · · · · · · · ·		X	
				·	Zuot	nk	0	
V = Z Wind	40~		i prine arresta da serie da s Serie da serie da seri	···	240	ł	· · · · · · · · · · · · · · · · · · ·	
	_((			·	March Control of Contr		1	
P= 24	97) <del>R</del>	• · · · · · · · · · · · · · · · · · · ·			240 #=		2	
		· · · · · · · · · · · · · · · · · · ·			1100	~	<del>\</del>	-
Var 3	12 \$ E	extra e	strong	<b>,</b>				
Ripe.	met.	tette	schiba	•			: 	20
to .9			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		-	~ ~
na an a						· · · · · · · · · · · · · · · · · · ·		
4			: 	· . i	·····	······································	· · · · · · · · · · · · · · · · · · ·	
<b></b>								
11	-1. A	· 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				×
	3/2 9 5			· · · · · · · · · · · · · · · · · · ·		-		Ť
	e te	$\mathcal{B} = \mathcal{A}$	36	·····	5		······································	
		$\mathcal{B} = \mathcal{A}$	36	-				
	e te	$\mathcal{B} = \mathcal{A}$	36					
	e te	$\mathcal{B} = \mathcal{A}$	36					
	e te	$\mathcal{B} = \mathcal{A}$	36					
	e te	$\mathcal{B} = \mathcal{A}$	36					
	e te	Z = e 4	36					
	e te	Z = e 4	26- 2mil-2					
	e te	Z = e 4	26- 2mil-2					
	e te	Z = e 4	26- 2mil-2					
	e te	Z = e 4	26- 2mil-2					
	e te	Z = e 4	26- 2mil-2					
	e te	Z = e 4	26- 2mil-2					
	e te	Z = e 4	26- 2mil-2					
	e te	Z = e 4	26- 2mil-2					
	e te	Z = e 4	26- 2mil-2					





## AISC 14th(360-10): ASD Code Check Direct Analysis Method

fc

ksi

.725 at 0 ft

.7 at 7.5 ft

fa 📟

Max Bend Location Equation	ding Check	0.560 0 ft H1-1b		Locat	Shear Check ion Defl Ratio	0.028 (s) 0 ft L/105
Bending R Bending V		Compact Compact			pression Flange pression Web	Non-Slender
				у-у	Z-Z	
Fy	36 ksi		Lb	7.5 ft	7.5 ft	
Pnc/om	57.802 k		KL/r	68.391	68.391	
Pnt/om	73.94 k					
Mny/om	7.311 k-ft		L Com	p Flange	7.5 ft	
Mnz/om	7.311 k-ft			ength	.625 ft	
Vny/om	22.182 k		L-torqu	-	7.5 ft	
Vnz/om	22.182 k		Tau_b		1	
Tn/om	6.876 k-ft		Contraction - Contraction			
Cb	1.862					

ksi

-15.919 at 0 ft

## **Engineering Calculation Sheet**

Date 11/16 Sheet of Contract 7481-77

011-2010A

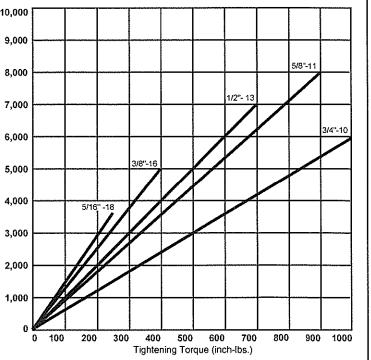
ubject	MiM	11 d 6				Revision	Ву	Date	Chk'd	Date
		·					TBS-			
	1143	1,612	9	*****						
		: .					· .	. i a		
1	1. 1	in l	sunst up	الم	1100	01-les	P			
<i>C</i> -\	comp.	37	CT C	07				(		
<u>.</u>		ay		••••••		<u>ر الم</u>			·····	
		$-\tau$			-D=	, 5			···•	
	C =	$\overline{\Lambda}$	······					· · · · · · · · · · · · · · · · · · ·		
,		$(\mathbf{x})$	U V		1= -	50 2 -	5E	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
,	······································		1	·····	K=	· 2		· · · · · ·	i The second se	
~	>	50	(1-)	<b>`</b>	~			· · ·		
t	-			State of the second			: · · ·			
		(1.2	-)(-	57					· · · · · · · · · · · · · · · · · · ·	
		6,0	the come	1-	· · · · · · · · · · · · · · · · · · ·					··· · · · · · · · · · · · · · · · · ·
11		6,0							······	
						12		···· · ± · · · · · · · · · · ·		<u>2</u>
Murant Care		-	)	· · · · ·						
R	in in	Spa	= 1614	n ē	2 - 12	P C	0-001-			
PR 0	Een In	hor	e bis	y U	z - lz	while	izs	will	·· ·· ·· ·· ·· ·· ·· ·· ·· ··	
10	Ean	hor	qu	y U	rad	いちこう	ies	will	······································	· · · · · · · · · · · · · · · · · · ·
6	Egy Ppik	hor	qu	y U	rad	いちいい	izs	will		
10	Ean	hor	qu	y U	rad	ひちいい	2 601. 125	will		
6	Ean	hor	qu	y U	rad	いちいい	rizs	will		
6	Ean	hor	qu	y U	rad	ひらいい	2 60(°	will		
10	Ean	hor	qu	y U	rad	ひらってい		will		
10	Ean	hor	qu	y U	rad	レモッジー				
10	Ean	hor	qu	y U	rad					
10	Ean	hor	qu	y U	rad					
10	Ean	hor	qu	y U	rad					
10	Ean	hor	qu	y U	rad					
10	Ean	hor	qu	y U	rad					
10	Ean	hor	qu	y U	rad					
10	Ean	hor	qu	y U	rad					
6	Ean	hor	qu	y U	rad					
6	Ean	hor	qu	y U	rad					
6	Ean	hor	qu	y U	rad					
10	Ean	hor	qu	y U	rad					
10	Ean	hor	qu	y U	rad					
10	Ean	hor	qu	y U	rad					

### **Technical Data**

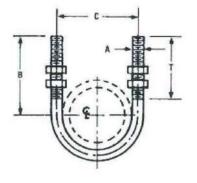
CATALOG 13

### Suggested Tightening Torque1 Volues To Produce Corresponding Bolt Clomping Loods

					1-								<u> </u>		- I J							
						SAE	Grade 2	Bolts				{	SAE	Grade 5	Bolts –		— SA	E Grade	7 ³ —	— SAE Grade 84—		
	<b>a</b> .	<b>D</b> 14	Tensile	<b>7</b>		Durat	012	<b>**</b>	. <del>.</del>	*	.9.	n	-1	012	***		012	<b>T</b> 1	- <del>7</del>	01.0	T!	- <del>-</del>
	Size	Bolt Dia.	Stress Area		isile Ingth	Proof Load	Load	<u>Tichtenin</u> Dry	<u>a lorque</u> Lub.	Ten: Strei		Pro Loa		Load	<u>Tiohlenin</u> Dry	<u>u lorque</u> Lub.	Load	Tightenin Dry	l <u>g rorque</u> Lub.	Clamp² Load	Dry	Lub.
		Dia. D(in.)	A (sq. in.)		1 psi)	(psi)	P(lb.)	K=0.20	K=0.15	(min	-	(ps		P(lb.)	K=0.20	K=0.15	P (lb.)	K=0.20		P (lb.)	K=0.20	K=0.15
		5 (ii.)	71 (54: 187	1,000		(1951)	(18.)	Ib. in.	lb. in.	()	p3()	100		7 ((0.)	lb. in.	Ib. in.	7 (101)	lb. in.	15. in.	1 (10.7	Ib. in.	15. in.
	4-40	0.1120	0.00604	74	000	55,000	240	5	4	120.	nnn Í	85,0	nn I	380	8	6	480	11	8	540	12	9
	4-48	0.1120	0.00661	1,1,1	ĩ	1	280	ő	5	120,	°°°	1	~~	420	ğ	7	520	12	9	600	13	10
	6-32	0.1380	0.00909				380	10	8					580	16	12	720	20	15	820	23	17
	6-40	0.1380	0.01015				420	12	9					640	18	13	800	22	17	920	25	19
	8-32	0.1640	0.01400				580	19	14					900	30	22	1100	36	27	1260	41	31
	8-36	0.1640	0.01474				600	20	15					940	31	23	1160	38	29	1320	43	32
	10-24 10-32	0.1900 0.1900	0.01750				720 820	27 31	21 23					1120 1285	43 49	32 36	1380 1580	52 60	39 45	1580 1800	60 68	45 51
	1/4-20	0.2500	0.02000				1320	66	49					2020	49 96	75	2500	120	96	2860	144	108
	1/4-28	0.2500	0.0364				1500	76	56					2320	120	86	2860	144	108	3280	168	120
[								lb. ft.	lb. ft.						lb. tt.	lb. tt.		lb. ft.	lb. ft.		lb. ft.	lb. tt.
	5/16-18	0.3125	0.0524				2160	11	8					3340	17	13	4120	21	16	4720	25	18
	5/16-24	0.3125	0.0580			1	2400	12	9					3700	19	14	4560	24	18	5220	25	20
	3/8-16 3/8-24	0.3750 0.3750	0.0775 0.0878			Ì	3200 3620	20 23	15 17					4940 5600	30 35	23 25	6100 6900	40 45	30 45	7000 7900	45 50	35 35
	3/6-24 7/16-14	0.3750	0.1063				4380	30	24					6800	50	35	8400	60	45	9550	70	55
ł	7/16-20	0.4375	0.1187				4900	35	25					7550	55	40	9350	70	50	10700	80	60
┥	1/2-13	0.5000	0.1419				5840	50	35					9050	75	55	11200	1	70	12750	110	80
	1/2-20	0.5000	0.1599	1			6600	55	40					10700	90	65	12600	100	80	14400	120	90
	9/16-12	0.5625	0.1820	1			7500	70	55					11600	110	80	14350		100	16400	150	110
	9/16-18	0.5625	0.2030	<u> </u>			8400	80	60					12950	120	90	16000	150	110	18250	170	130
	5/8-11	0.6250	0.2260				9300	100	75					14400	150	110	17800	190	140	20350	220	170
	5/8-18 3/4-10	0.6250 0.7500	0.2560	Ι.			10600 13800	110 175	85 130					16300 21300	170 260	130 200	20150 26300		160 240	23000 30100	240 380	180 280
	3/4-10	0.7500	0.3730			¥	15400	195	145					23800	300	200	29400		280	33600	420	320
	7/8-9	0.8750	0.4620	60,	000	33,000	11400	165	125					29400	430	320	36400	520	400	41600	600	460
ľ	7/8-14	0.8750	0.5090		1	1	12600	185	140					32400	470	350	40100	580	440	45800	660	500
Ì	1-8	1.0000	0.6060				15000	250	190	1	,			38600	640	480	47700	800	600	54500	900	680
	1-12	1.0000	0.6630				16400	270	200	N N		V		42200	700	530	52200		660	59700	1000	740
	1-1/8-7	1.1250 1.1250	0.7630 0.8560				18900 21200	350 400	270 300	105,	ן טטט	74,0	טטנ	42300 47500	800 880	600 660	60100 67400		840 940	68700 77000	1280	960 1080
ł						_												+		87200		
	1-1/4-7	1.2500 1.2500	0.9690 1.0730			I	24000 26600	500 550	380 420					53800 59600	1120 1240	840 920	76300 84500		1100	96600	1820	1360 1500
	1-3/8-6	1.3750	1.1550				28600	660	490					64100	1460	1100	91000		1560	104000	2380	1780
	1-3/8-12	1.3750	1.3150				32500	740	560					73000	1680	1260	10400		1780	118400	2720	2040
	1-1/2-6	1.5000	1.4050				34800	870	650	1				78000	1940	1460	11100	2780	2080	126500	3160	2360
	1-1/2-12	1.5000	1.5800			V	39100	980	730	V		Y		87700	2200	1640	12400	5 3100	2320	142200	3560	2660
ľ	Notes:			· · · ·						10	.000				. <u> </u>	·		·	·		·	
		nina tora	ue values	aro	مام	ilated fre	m the fo	mula		10,	000											
			te values T = tighter						on	٩	000	L										
	coefficie	nt; $D = nc$	minal bol	t dia	mete	-				э,		1						1				
	load dev	reloped by	y tightenin	ıg. Ib											1			1	1	= 10		


bad developed by tightening. Ib. 2. Clamp load is also known as preload or initial load in tension on bolt. Clamp load (lb.) is calculated by arbitrarily assuming usable bolt strength is 75% of bolt proof load (psi) times tensile stress area (sq. in.) of threaded section of each bolt size. Higher or lower values (Ibs.) of clamp load can be used depending on the application requirements and the judgement of the designer. Bolt Clamping Force

3. Tensile strength (min psi) of all Grade 7 bolts is 133,000. Proof load is 105,000 psi.


4. Tensile strength (min psi) of all Grade 8 bolts is 150,000 psi. Proof load is 120,000 psi.

Ref.: Fastening Reference. Machine Design. Nov. 1977.

**Bolt Clamping Force** vs. **Tightening Torque** for **Unlubricated Steel Bolts.** 



# FIG. 137 STANDARD U-BOLT WITH 4 HEX NUTS



Material:	Carbon steel, 304 (137SS) and 316 (137SX) stainless steel
Finish:	Plain, electro-galvanized.
Service:	Designed for support or guide of heavy loads.
Approvals:	Complies with Federal Specifications WW-H-171-E (Type# 24), A-A-1192 A (Type# 24), and MSS SP-58 and SP-69 (Type# 24).
Ordering:	Specify pipe size, figure number and finish. Sizes 1/2" to 1" can be furnished with 3/8" rod size.
Notes:	U-bolts with longer tangents or longer threads are avail- able. Also available with plastic coating.

Available domestic

PIPE SIZE	PIPE OD	A	В	с	т	WGT EACH (lbs)	MAX REC LOAD (lbs)
1/2	0.840	1/4-20	2¾	13/16	23/8	0.10	485
3/4	1.050	1/4-20	2¾	13/8	23/6	0.10	485
1	1.315	1/4-20	23/4	1 5/8	2³/8	0.10	485
11/4	1.660	³/e-16	21/8	21/16	2³/s	0.26	1220
1 1/2	1.900	3⁄8-16	3	2³/8	21/2	0.28	1220
2	2.375	³/8-16	31/4	213/16	21/2	0.32	1220
21/2	2.875	1/2-13	33/4	37/16	3	0.70	2260
3	3.500	1/2-13	4	4 1/16	3	0.76	2260
31/2	4.000	1/2-13	41/4	4%	3	0.80	2260
4	4.500	1/2-13	41/2	51/16	3	0.86	2260
5	5.563	1/2-13	5	61/8	3	1.00	2260
6	6.625	⁵ /8-11	61/8	73/8	33/4	1.98	3620
8	8.625	5/8-11	71/8	9³/a	33/4	2.26	3620
10	10.750	³ /4-10	8¾	11%	4	3.94	5420
12	12.750	7/8-9	95/8	13¾	41/4	6.40	7540
14	14.000	7/8-9	101/4	15	43/4	8.30	7540
16	16.000	7/8-9	111/4	17	43/4	9.20	7540
18	18.000	1-8	125/8	191/a	43/4	13.50	9920
20	20.000	1-8	13%	211/8	43/4	14.60	9920
24	24.000	1-8	15%	251/8	43/4	16.90	9920

# Calculations – U Bolt Clamping Force



# **U- Bolt Clamping Force :**

For U-bolt of dia. 1/2" the pretension torque is 65 ft. lbs.

Clamping force '**P**' = 
$$\frac{Torque}{K * Diameter}$$

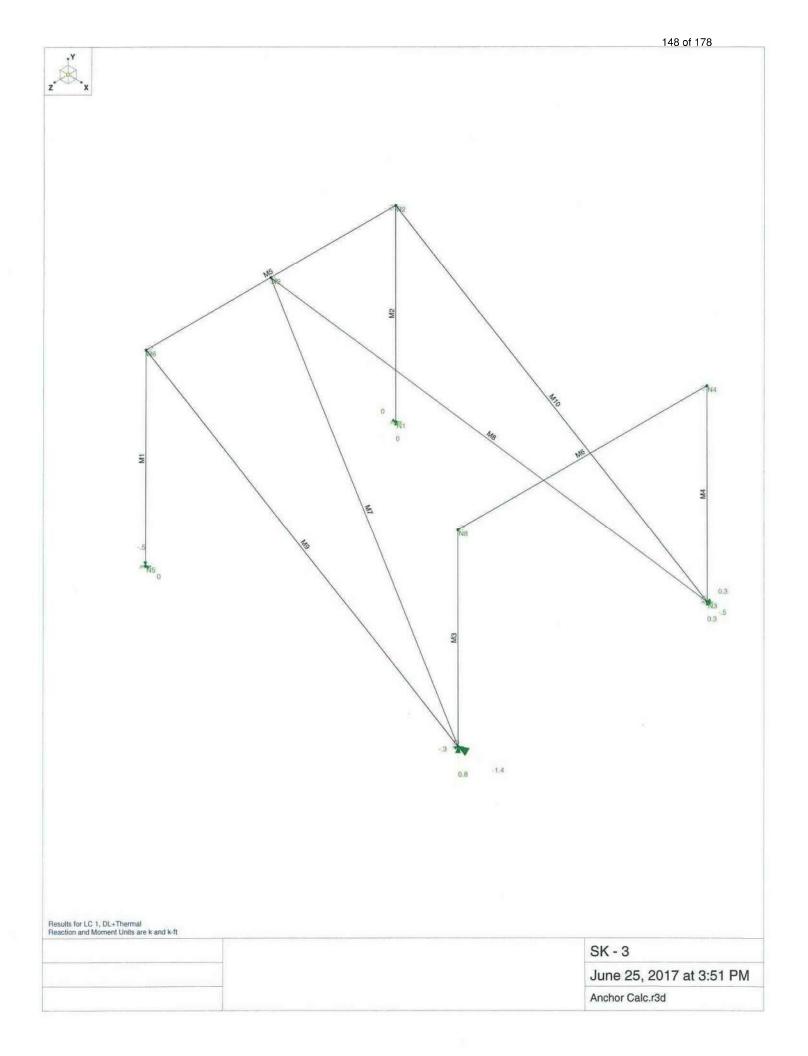
K = 0.2 (For new U-bolt and nut with lubricated threads.)

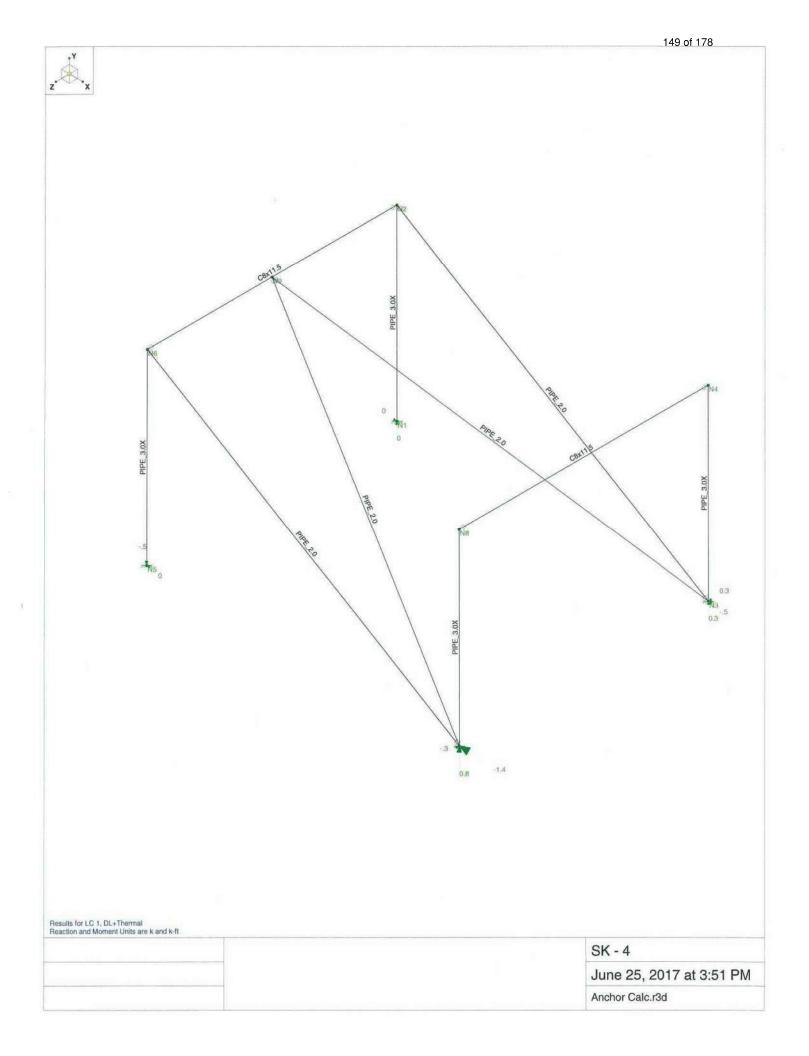
$$P = \frac{65 * 12}{0.2 * 0.5}$$
  
P =7800 lbs.

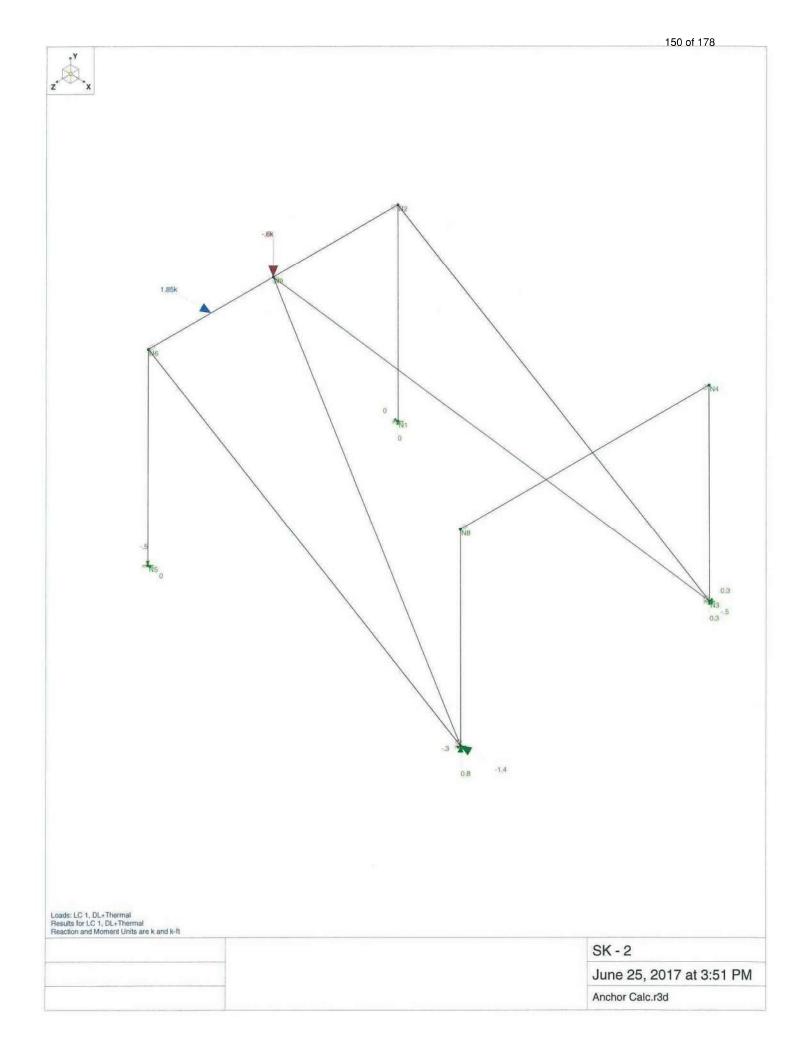
146 of 178

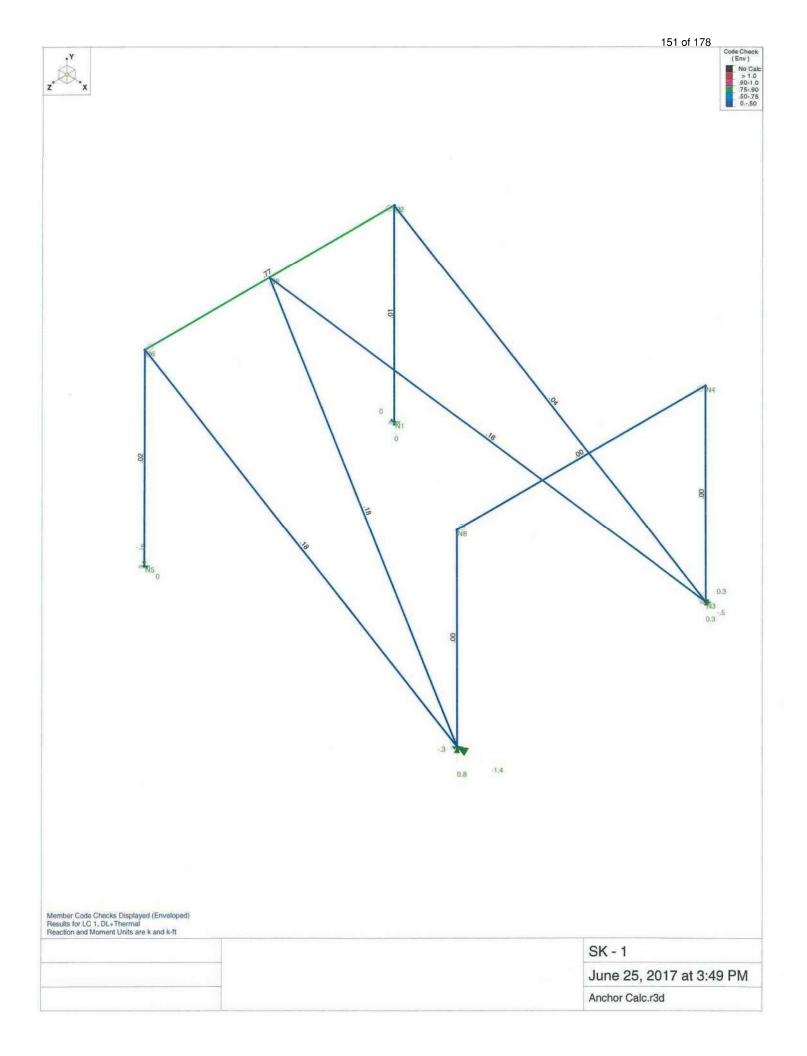


# **Engineering Calculation Sheet**

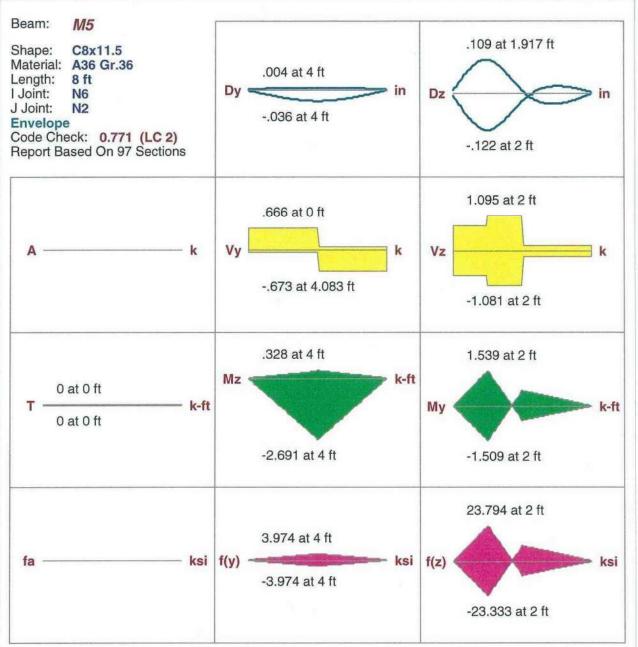

 Date
 Sheet
 of
 178 of


 Contract
 7481-77
 77


011-2010A

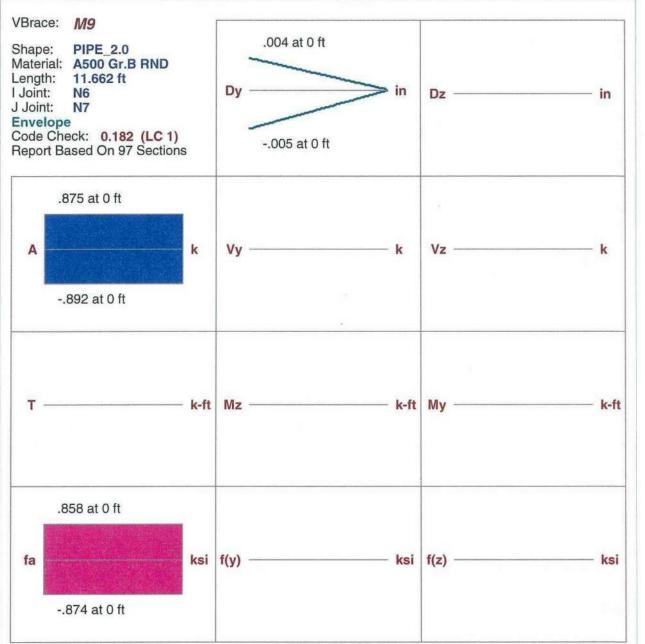

Calculation No.	

Subject	McMordo	Revision	Ву	Date	Chk'd	Date
	•		PF			
	Utilities					
				*****		
1					· · · · · · · · · · · · · · · · · · ·	
2 12	tilities tiping Ancho	V.5		Roi	1209-	•
		······································		Roi		
4 A	tuchor Figures bor Ballows load	· · · · · · · · · · · · · · · · · · ·		- 99-	<u></u>	
5	Bellows load	·····	· · · · · · · · · · · · · · · · · · · ·			
0		: 15-1	×		V	
7	t'& spring const = zi	2 fin	. 1	4		
8					•••••••••••••••••••••••••••••••••••••••	
9 6	of spring const = 31	277in			· ·· ··· · ··· ······	
10						
11 460	we z-d' & Pipes El	-69	an a		···· · · · · · · · · · · · · · · · · ·	
12						
13 42	ge 25 exp à contra	ction	: :			
14		n an ann an t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-	6	100	· : 	
15	(= Z(Z12)(23)+ (317)(2 = 1653 #	2,3)	· · · · · · · · · · · · · · · · · · ·		:	
16	= 1453 #					
17				• •		
18		<u>X</u>				
19	CEXILE Channels		· · · · · · · · · · · · · · · · · · · ·			
20	\$ 2"\$ ATO PUPE		1.0	11.2	· · · · · · · · · · · · · · · · · · ·	
21			8-12	GTP		
22	(in ) were year			PI	20	
23	Following Printast			$\mathbf{X}$		
-24.			· · · · ·	$\sim$		
25			: 			
26				e. 1		
27			Ele		Ce0 '	
28		6			d	
29						
30			-Og	10 gtt	7 600	v j
31		$\parallel$	b. t	ti's,"	1 chai	nnel
32			~	0	ALE	
33		P				
1 2	3 4 5 6 7 8 9 10 11 12 13 14	15 16 17 18	19 20	21 22 23	24 25 26	27 28 29





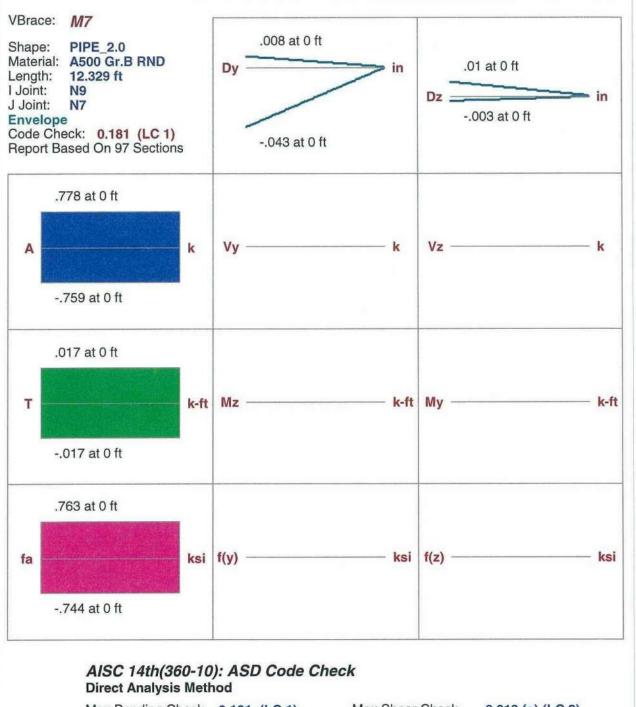


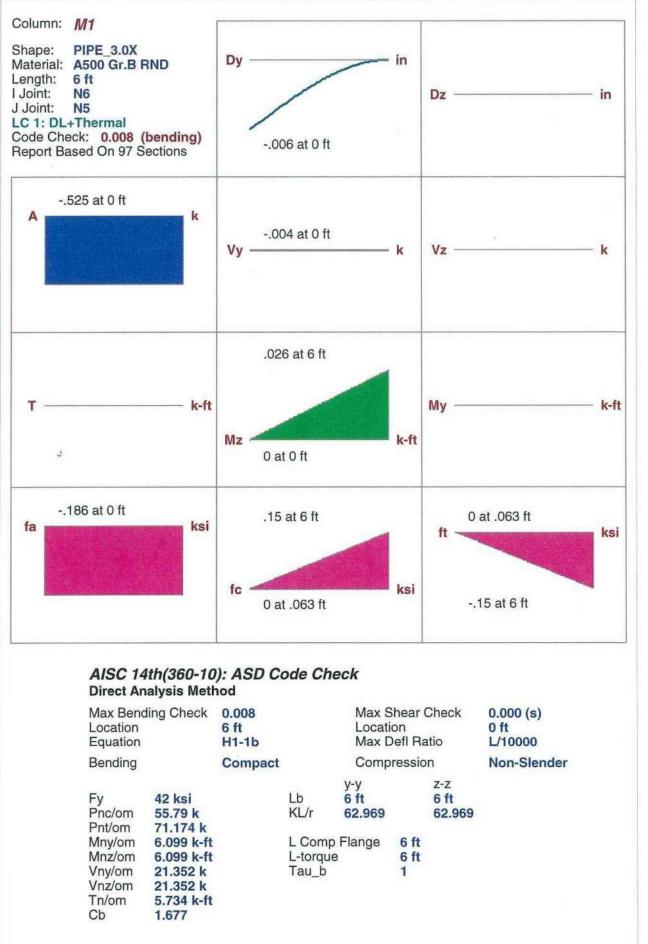

152 of 178



### AISC 14th(360-10): ASD Code Check Direct Analysis Method


Max Bend Location Equation	ling Check	0.771 (LC 2 ft H1-1b	2)	Max SI Locatio Max D	n	0.049 (z) (LC 1) 2 ft L/821		
Bending F Bending V		Compact Compact		Compression Flange Compression Web			Non-Slender Non-Slender	
				у-у		Z-Z		
Fy	36 ksi		Lb	8 ft		8 ft		
Pnc/om	21.365 k		KL/r	153.975		30.913		
Pnt/om	72.647 k							
Mny/om	2.231 k-ft		L Comp	Flange	8 ft			
Mnz/om	16.367 k-ft	t	L-torque		8 ft			
Vny/om	22.764 k		Tau b		1			
Vnz/om	22.8 k		-					
Cb	1.318							




### AISC 14th(360-10): ASD Code Check Direct Analysis Method

Max Bend Location Equation	ding Check	0.182 (LC 0 ft H1-1b*	: 1)	Locatio	hear Che on efl Ratio	0.000 (s) (LC 1) 0 ft L/10000	
Bending		Compact		Compr	ression		Non-Slender
				у-у	Z-2	Z	
Fy	42 ksi		Lb	11.662 f	t 11	.662 ft	
Pnc/om	4.812 k		KL/r	178.491	17	8.491	
Pnt/om	25.653 k						
Mny/om	1.494 k-ft		L Comp	Flange	11.662 1	t	
Mnz/om	1.494 k-ft		L-torque	-	11.662 1	t	
Vny/om	7.696 k		Tau b		1		
Vnz/om	7.696 k						
Tn/om	1.413 k-ft						
Cb	1						





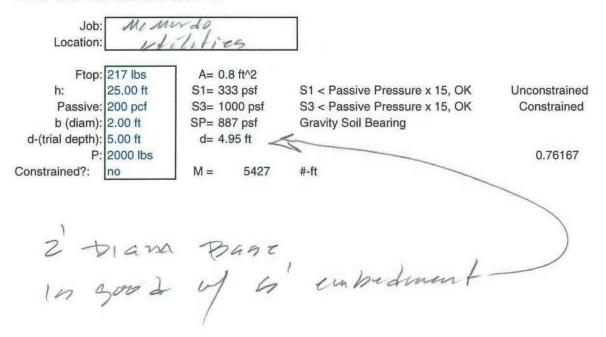
Max Bend Location Equation	ing Check	0.181 (LC 0 ft H1-1b*	1)	Locatio	near Check n efl Ratio	0.013 (s) (LC 2) 0 ft L/10000
Bending		Compact		Compr	ession	Non-Slender
Fy Pnc/om Pnt/om	42 ksi 4.306 k 25.653 k		Lb KL/r	y-y 12.329 ft 188.699	z-z 12.32 188.6	
Mny/om Mnz/om Vny/om Vnz/om Tn/om Cb	1.494 k-ft 1.494 k-ft 7.696 k 7.696 k 1.413 k-ft 1		L Comp L-torque Tau_b	-	12.329 ft 12.329 ft 1	



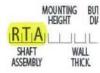


### **Engineering Calculation Sheet**

Date 3/10 shifte of 178 of Contract 7481 - 27


<u>Contract</u> 7481 -Calculation No.

subject Mc Murda Revision Bу Date Chk'd Date DF Utilities Light Pole Bune Cale FLEAR hind speed Risk cat I ŦZ n V=150 mgpH withinat 11 q= , 00256 22 20 Kd (V)2 10 41 - . 95 11 Lan : . 35 Kz = 1.12 q=. 10296 (1,12)(05)(.95)(190)² 4 15 16 = 52 Port ult 17 18 F= q G Cq AF 2 61=.35 19 20 21 F= 52(.55)(1.3)(2.9) 22 AF2 = 12.516 Cf = .7 = 167 # UIT 23 24 F2 - 52658(.7712.5) 25 = 3877 01+ 26 27  $F_1 = 167(25) + 387(272)$ 28 29 - 361 # UT 30 31 Freq = 217 + 32 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Marrick Form 47C / Ray 8/00




Date:	3/8/17	Sheet	of	
Project No.:	7401	- 77		
By:	PIF			

### FLAGPOLE COLUMN AND CAISSON



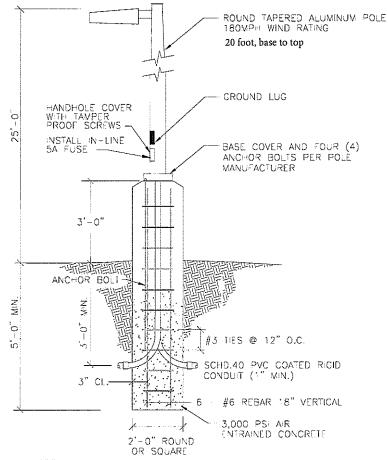
# Catalog Number Systen The catalog number for Hapo following Identification system



### **Catalog Number Example** RTA 30 D 8

Round Tapered Aluminum, 3C .188" Wall Thickness, 8" Buth Diameter, 4-Bolt Base, Satin /

Wa	II Thickness
B =	.125"
C =	.156"
D =	.188"
E =	.219"
F =	.250"
G =	.312"


### **Butt Diameter**

4 = 4" 5 = 5" 6 = 6" 7 = 7" 8 = 8"9 = 9"

1 = 10"

Top Diameter A = 3"B = 4.5"

A Mig. Het.	B Wall Thickness	C Butt Du.	TOTAL LUM. WEIGHT	120	130	Ma 140	хімим Е 150	PA 160	170	180	OLD CATALOG NUMBER	CATALOG NUMBER
06	0.125	4	165	10.2	8.6	7.3	6.3	5.5	4.8	4.3	78-001	RTA06B4A4-**
08	0.125	4	100	6.7	5.6	4.6	4.0	3.4	2.9	2.6	78-002	RTA08B4A4-**
08	0.188	4	160	10.0	8.3	7.0	6.1	5.2	4.6	4.0	78-015	RTA08D4A4-**
10	0.125	4	60	4.7	3.8	3.1	2.6	2.1	1.8	1.5	78-003	RTA10B4A4-*
10	0.188	4	100	7.2	5.9	4.9	4.2	3.5	3.1	2.7		RTA10D4A4-*
10	0.125	5	150	9.4	7.8	6.6	5.7	4.9	4.3	3.7	78-012	RTA10B5A4-*
10	0.188	5	240	14.2	11.9	10.0	8.8	7.6	6.6	6.0		RTA10D5A4-*
12	0.125	4	40	3.3	2.5	1.9	1.5	1.2	1.0		78-004	RTA12B4A4-*
12	0.188	4	70	5.3	4.3	3.4	2.9	2.3	2.0	1.7	78-018	RTA12D4A4-*
12	0.125	5	100	7.1	5.8	4.8	4.1	3.5	3.0	2.6	78-009	RTA1285A4-*
12	0.156	5	140	9.0	7.4	6.2	5.3	4.6	3.9	3.4	78-009W3	RTA12C5A4-*
12	0.188	5	175	11.0	9.1	7.6	6.6	5.7	4.9	4.3	78-009W4	RTA12D5A4-*
14	0.125	4	45	2.1	1.5	1.0	-			-	78-005	RTA14B4A4-*
14	0.188	4	40	3.9	3.1	2.3	1.9	1.5	1.2	1.0	78-019	RTA14D4A4-*
14	0.125	5	70	5.4	4.3	3.5	2.9	2.4	2.1	1.7	78-010	RTA1485A4-*
14	0.156	5	100	7.0	5.7	4.7	4.0	3.3	2.9	2.4	78-021	RTA14C5A4-*
14	0.188	5	125	8.6	7.1	5.9	5.0	4.2	3.7	3.2	78-022	RTA14D5A4-*
16	0.188	4	45	2.8	2.0	1.4	1.0	1.44	11 - C	State of	78-027	RTA16D4A4-*
16	0.125	5	55	4.0	3.1	2.4	1.9	1.5	1.2	1.0	78-011	RTA16B5A4-*
16	0.156	5	70	5.5	4.3	3.5	2.9	2.3	1.9	1.6	78-029	RTA16C5A4-*
16	0.156	5	70	5.1	4.2	3.5	3.0	2.5	2.1	1.9	51-002S48	RTA16C5B4-*
16	0.188	5	95	6.9	5.5	4.5	3.8	3.1	2.7	2.3	78-030	RTA16D5A4-*
16	0.188	6	230	13.7	11.5	9.8	8.5	7.4	6.4	5.6		RTA16D6B4-*
18	0,125	5	40	2.9	2.1	1.5	1.1	No.		-	78-007	RTA18B5A4-*
18	0.156	5	40	4.1	3.2	2.4	1.9	1.5	1.2	1.0	78-031	RTA18C5A4-*
18	0.188	5	60	5.3	4.2	3.3	2.7	2.2	1.8	1.5	78-032	RTA18D5A4-*
18	0.156	6	140	9.0	7.4	6.2	5.4	4.6	4.0	3.5		RTA18C6B4-*
18	0.188	6	180	11.2	9.4	7.9	6.9	5.9	5.1	4.5	AND A SHARE	RTA18D6B4-*
18	0.156	7	220	13.6	11.3	9.6	8.4	7.2	6.3	5.5		RTA18C7B4-*
20	0.125	5	40	1.9	1.2	(Unerer	-	- (-);-(-);-	-	1.	78-008	RTA20B5A4-*
20	0.156	5	40	3.0	2.1	1.5	1.1	-	-	-	78-033	RTA20C5A4-*
20	0.188	5	40	4.1	3.0	2.3	1.8	1.4	1.0	14	The second	RTA20D5A4-*
20	0.125	6	70	5.2	4.2	3.5	2.9	2.5	2.1	1.7	51-001	HTA20B6B4-*
20	0.156	6	100	7.2	5.9	4.9	4.2	3.6	3.1	2.6	51-002	RTA20C6B4-*
20	0.188	6	140	9.2	7.6	6.4	5.5	4.7	4.0	3.5	51-003	RTA20D6B4-
20	0.156	7	175	11.2	9.3	7.9	6.8	5.8	5.1	4.4	51-004	RTA20C7B4-*
20	0.188	7	230	14.0	11.7	9.9	8.6	7.4	6.4	5.6	51-005	RTA20D7B4-*
20	0,156	8	260	15.8	13.3	11.3	9.8	8.4	7.3	6.4	51-006	RTA20C8B4-



### NOTES:

- 1. CONNECT ALL STEEL TO GROUND WIRE.
- 2. POLE BASE SHALL BE 36" ABOVE FINISHED GRADE WHEN LOCATED IN PAVED PARKING AREA. PROVIDE TROWEL FINISH TO ALL EXPOSED CONCRETE SURFACES.

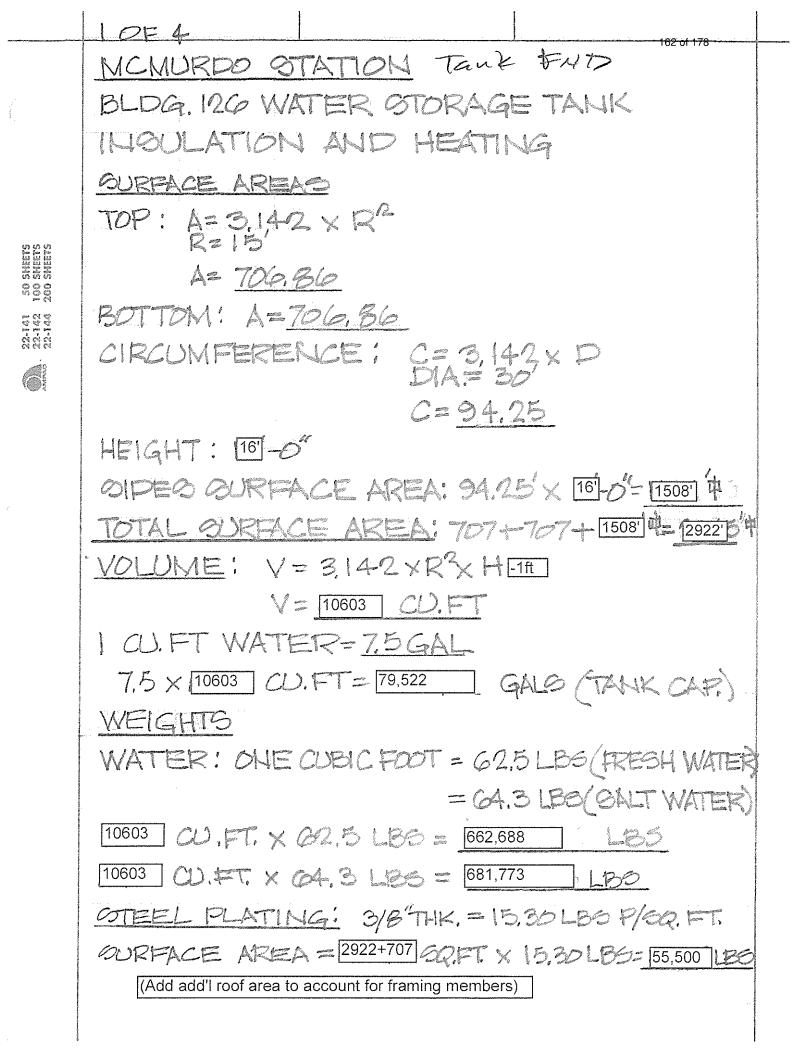
<u>LIGHT</u>	PO	LE	BASE	DETAIL
SCALE: NON	IE			



STRUCTURAL McMurdo ENGINEERING CALCULATION Tank FND

160 of 178

		CALCULATION Dave	0 14 0
.0 CALCULATIONS	Project Design Loads: Color Key:	ASCE 7-10 Design Input Resultant	Reference Key: ASCE 7-10 (ASCE 7-05)
1 BASIC DESIGN LOADS			
CAT = IV	Risk Cate	gory	Table 1.5-2 (Occupancy Category, Table 1-1)
1.1 WIND LOADS			
Wind Design Parameters:			
EXP = D	Exposure		Section 26.7.3 (Sect. 6.5.6)
V = 180 MPH	Basic wind	d speed	Section 26.5 (Sect. 6.5.4)
G = 0.85	Gust effect	t factor for rigid structures	Section 26.9, Sect. 7.6 (Sect. 6.5.8)
K _d = 1.0	Wind direct	ctionality factor	Table 26.6-1 (Table 6-4)
K _z = 1.08	Velocity p	ressure exposure coefficient (varies)	Table 29.3-1 (Table 6-3)
K _{zt} = 1.0	Topograpi	nic factor	Section 26.8 (Sect. 6.5.7)
l = 1.0	Importanc	e Factor	N/A (Table 6-1)
$\psi_{\mathbf{w}}$ = 1.0		Design Factor	N/A (1.6, Sect. 2.3.2)
$q_z = 0.00256(K_z)$	(K _{zt} )(K _d )(V ² )*I*ψ _w	(Strength Level)	Eq. 29.3-1 (Eq. 6-28)
q _z = 89.6 psf			
1.2 LIVE LOADS			Chapter 4
Platforms:			
w _{ap} = 60.0 psf	Access pla	atform live load	Table 4-1
w _{mp} = 125.0 psf	Maintenar	nce platform live load	
w _{ps} = 100.0 psf	Stair live I	bad	
w _r = 20.0 psf	Roof live I	oad	
		1	




STRUCTURAL Me Mardo ENGINEERING CALCULATION Tank FUD

161 of 178

### 7.1.3 SNOW LOADS

$p_g = 40.0 \text{ psf}$ $C_e = 1.0$ $C_t = 1.2$ $l_s = 1.2$	Ground snow load Exposure Factor Thermal Factor Importance Factor	Attachment 8.1 Table 7-2 Table 7-3 Table 1.5-2 (Table 7-4)
$p_f = 0.7 C_e C_t l_s p_g =$	40.3 psf	Eq. 7.3-1 (Eq. 7-1)
w _s = max(p _f , (if (p _g > 20, 20p	sf*1 _s , p _g *1 _s ))) = 40.3 psf	Design roof snow load



2014 163 of 178 TOTAL WEIGHT OF FULL TANK FND 55,500 + 662,688 = 718,200 LBG (FRESH WATER) INGULATION WEIGHTS DOW CHEMICAL COMPANY OTYRO FORM BRAND INSOLATION OTYROFDAM DENRITY = 1.80 LB./CU.FT. 1.80 + 12=0.13 LBS P/IN. XG = 0.9 LBS P/SQ.FT. RECOMMEND (3) 2"THK, LAYERO, 48,96" OHTO. WITH OVERLAPPING SEAMS WITH THE FIRST LAYER VABR AND WEATHERPROPED ALL SURFACES ARE TO BE INSULATED 186 TOPAND SIDES TO HAVE CORRUGATATED , 021 ALDMINUM JACKETING. WEIGHT, 282 LB, P/OQ, FT. 2215 OR FT. X. 282 LES, 3625 lles SEGAND LAYER TO BE VAPOR PRODFED WITH CHILDERS CHIL-PROF CP-22 CHIL-PROF-CP-22 COVERAGE= (FOR INGULATION) GBGALS F/100'\$ WEIGHT = B.I LBS P/ US GAL. 1838 3Q + 100= 18,38 × 6,8 GALG= 125 × 10%= 12.5 GALS + 125 GALS = 138 GALS REQ'D. MB FGAL CANG

SMEETS SMEETS SMEETS

2002

22-141

GValue C

3 OF 4 Tank FMD
WEIGHT 138 GALS X B. I LES P/GAL= 1118 LES
STRAPPING 200' CARTONS
STRAPPING TO BE INSTALLED 12 ON CNTRS
STARTING WITH THE BOTTOM OF ALUM.
JACKETING.
STRAPPING TO BE= T=304, 3/4-WIDTH., . DODTHK
25 GA, - 25 GAGE 10, 875 LB. P/OR, FT.
.875 ÷ 144 = 0.006 LB. P/QQ. IN.
.006 x 12"= 0.072 LB. + 4 = 0.018 LB. X 3 =
0.054 LB. PER 12 LA. 3/4" WIDE STRIP
WEIGHT = 0,054 LB. X 200' = 11 LBS PER CARTON.
CIRCUM = 94 FT.
REQUIRE (2) ROWG OF 100' INSTALLATION STRAPS
12" DN CNTRS. REQUIRE (24, 100'STRAFS (APPROX)
2400 FT. + 200' (CARTONI) = (10) CARTONS X 11 135=132155
TOTAL WEIGHT OF INGTALLATION
WATER = $\overline{662,688}$ LB.
TANK STL, PLATE = $55,500$
NEOLETRA = 2630
ORR, ALDM = 625
VAPOR BARRIER = 1118
$\sigma$ TRAPPING = 132
TOTAL WEIGHT = 722,700lbs (Minimum)
572486: 707 " = BIOLES P/ORFT. OR 5.6 LB6
P/39.1N.

50 SHEETS 100 SHEETS 200 SHEETS 22-141 Amazo 22-142

	4 DE 4 Tank FND
5 5 5 M 10 10	$\frac{4.0F.4}{6501178} = \frac{16501178}{16501178} = \frac{16501178}{16501178} = \frac{107}{1000} + \frac{10000}{1000} = 1838 @Q.FT. \frac{QUANTTITY}{1000} = (TOP + 010E0) = 1838 @Q.FT. 1000.45' \times 96' 6HT. = 32 @Q.FT. 1000.45' \times 96' 6HT. = 32 @Q.FT. 1000.45' \times 96' 6HT. = 57 @HT0 \times 10\% = 6 OR 63 @HT@ P/LAYER \times 2 = 126 @HT0.TDTAL$
22-141 50 SHE AMARKO 22-142 100 SHE 22-144 200 SHE	TANK BOTTOM OUPPORT/INGULATION TANK BOTTOM GR. FT. = 707 TANK TO BE OUPPORTED ON EXISTING 6" × 12" TIMBERO LAYED ON COMPACTED 601L. 3/4" THK. C-C EXT. PLYWOOD SHEETS TO BE LAIN PERPENDICULAR TO 6" × 12" TIMBERS TO OUPPORT TANK BOTTOM INGULATION AND TANK. TOP OF BOTTOM INGULATION TO HAVE A GECOND LAYER OF 3/4" C-C EXT. PLYWOOD SHEETING.
	WEIGHT OF TANK INGTALLATION ON BOTTOM INGULATION SUPPORT 16: BIOLBS 9/32, FT. OR 5.6 LBS P/SR. IN.
	BOTTOM INGULATION TO BE: (2) 3". THK. LAYERS OF DOW HIGH LOAD 60, 24" × 96" OHEETS, EACH LAYER TO BE INSTALLED PERPENDICULAR TO PLYWOOD SHEATHING AND EACH OTHER.



STRUCTURAL ENGINEERING CALCULATION

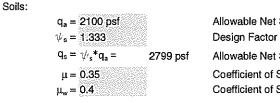
Ne Mindo Tenk FAD

### 7.1.4 SEISMIC LOADS

Seismic Design Parameters:		
S _{DS} = 0.300 g	Design spectral response	Attachment 8.1
S _{D1} = 0.085 g		
S ₁ = 0.128 g		
SDC = C	Seismic Design Category	Table 11.6
l = 1.50	Importance Factor	
R =	Response Modification Factor	Table 15.4
Ω0=	Overstrength Factor	
C _d =	Deflection Amplification Factor	
$C_s = S_{DS} * I/R$	Seismic Response Coefficient	Eq. 12.8-2
$C_{s_{min}} = 0.8*5_{1}*I/R$	Minimum Seismic Coefficient for $S_1 \ge 0.6g$	Eq. 15.4-2
$E_h = \Omega_0 * C_S$	Horizontal Seismic Load Effect for Connections	Eq. 12.4-7
$E_v = 0.2*5_{DS} = 0.060 g$	Vertical Seismic Load Effect	Eq. 12.4-4

ltem (i)	Structure Type	R _I	Ω _{0_i}	Cd_l	C _{s_l}	E _{h_l}
mf	Moment-resisting frame systems: Moment frame w/ unlimited height	1	1	1	0.450	0.450
bf	Building Frame Systems: Braced frame w/ unlimited height	1.5	1	1.5	0.300	0.300
р	Inverted pendulum type structures: T-5upports	2	2	2	0.225	0.450
е	All other self-supporting structures not specifically addressed, ie. skid supported equipment	1.25	2	2.5	0.360	0.720
t	Flat bottom ground-supported tanks, mechanically anchored	3	2	2.5	0.150	0.300
r	Rigid equipment, Sect. 15.4.2 (T < 0.06s)	3.33	3.33	3.33	0.135	0.450

Table 15.4: Seismic Coefficients for Nonbuilding Structures


166 of 178



STRUCTURAL ENGINEERING CALCULATION Me Mordo tank FNB

167 of 178

### 7.2 FOUNDATION DESIGN PARAMETERS



Allowable Net Soil Bearing Pressure Design Factor for Short-Term Loading Allowable Net Short-Term Soil Bearing Pressure Coefficient of Sliding Friction for foundations on soil Coefficient of Sliding Friction for steel on wood Per Geotechnical Report



STRUCTURAL ENGINEERING CALCULATION

Nemerdo tank FUD

168 of 178

ATER STORAGE TA				Atmospheric
ATER STORAGE TA	INK FOUNDATION			Atmospheric
1000	<ul> <li>Developer Operation of the second second.</li> </ul>	WWA D103 (D100 equivalen		
W _s = 60		-	and insulation (To Be Verified)	See attached
V _t = 80	1691 E 469 ( 69 )	3 Volume of tank	254.65 BBL	
$\gamma_w$ = 8.0	5 lb/gal 62.5 lb/fi	A3 Density of product (wate	er)	
$W_p = \gamma_v$	*V _t = 66B.0 kip	Weight of product		
h _t = 19	2.0 in 16.00 ft	Height of tank		
D = 36	D.0 in 30.00 ft	Diameter of tank		
D _{bc} = 36	4.0 in	Diameter of bolt circle		
N = 12		Number of Anchors		
$\mathbf{d}_{n}=1,0$	ed Markel Method State Constrained and a	Nominal bolt diameter (		
X _s = 96	representation and the second second	Height of full tank center		
H = 16		Maximum design fluid le	vel	
$t_u = 0.3$	uverseledenselederer solderer van de service van de	Tank shell thickness		
1000	000000 psi	Elastic modulus of tank r		
T _L = 6.0	BRERNE ACCESSION	Regional long-period trai	nsition penod	Geotechnical report AppF
$F_a = 1.0$	and and the state of the second s	Sect. 8.1.0	<b>-</b>	
$S_o = S_{D_2}$		Peak ground acceleratio		<i>.</i> .
R _i = 2.	Malita di Citta Colato di Stati		or self-anchored, 3.0 for mechan	
$R_c = 1.1$			or self-anchored, 3.0 for mechan	ically anchored)
K = 1.9 S _{D1} = 0.0	wheeld and had been a how out of the second	Coefficient to adjust dar	nping	
$S_{D1} = 0.0$ $T_s = S_{D1}$	-			
's — Dj	/ JDS - 0.205			
Seismic Load:				
	[D/3.68*g*tanh(3.68	H/D)]^0.5		ive (sloshing) mode, AWWA Eq. 14-18
Tc = 3.2			[13-22]	
H/D = 0.5	an a			
Ti = 0.0	S		Natural impulsive period of th	e tank system, AWWA Sect. 14.3 [13.5.1]
$S_{ai} = S_{DS}$	= 0.300 g		0 <u>≤</u> Ti <u>≤</u> Ts, AWWA Eq. 14-9 [	13-9]
S _{ac} = mi	$n(S_{DS},K^*S_{D1}/Tc) =$	0.040 g	Tc ≤ T _U AWWA Eq. 14-12 (13	-12]
A _i = ma	x(Sai*I/1.4Ri,0.36S1*	I/R _i )	Impulsive spectral accelerati	on parameter, AWWA Eq. 14-16 [13-16]
$A_i = 0.1$	29 g			
$A_c = S_{ac}$	*I/1.4R _c		Convective spectral accelera	tion parameter, AWAA Eq. 14-17 [13-18]
$A_c = 0.0$	28 g		(Sloshing)	
Overturning:				
D/H = 1.8	75			
$W_i = if(I$	)/H>1.333, tanh(0.86	6D/H)Wp/(0.866D/H), (1.0-0	.218D/H)Wp) Effe	ctive impulse weight, AWWA Eq. 14-20 [13-2
W _i = 38	).6 kip			
$W_{c} = (0,$	23D/H) tanh(3.67H/D	)Wp	Effective convective weight,	AWWA Eg. 14-22 [13-26]
$W_{c} = 270$				
	<b>-</b>			
X _i = if([	)/H>1.333, 0.375H, (C	.5-0.094D/H)H)	Effective moment arm for im	pulsive lateral seismic force, AWWA 14-24/2
X _i = 6.0	D ft		[13-29]	
$X_c = H(1)$	0-(cosh(3.67H/D)-1)	/(3.67H/D)sinh(3.67H/D))	Effective moment arm for co	nvective lateral seismic force, AWWA Eq. 14
$X_{c} = 9.8$			[13-30]	· · · · · · · · · · · · · · · · · · ·
Av = 0.1	4S _{DS} =	0.042 g	Vertical seismic force compo	nent, AWWA Sect. 14.3.4.3 [13.5.4.3]
λ <u>ι</u> // λ	(\\\.X. <b>+</b> \\\ X. \\\\2 \\\\2 + (A	wcXc)^2)^0.5 + 0.4A√(ws+۸¢	()D/2 Overturning me	ment at base, AWWA Eq. 14-19 [13-23]
ivi _a ≕ ((A	**i^i + **s^s/j^2 + (P	c**c/\c/`Z/`U.J + U.4/\v(**s+*)	Overunning mo	nnenical Dase, AWWWA EQ. 14-19 [10-23]



STRUCTURAL ENGINEERING CALCULATION

Mc Mordo Tank FND

169 of 178

	Yield strength of shell bottom
	Thickness of bottom shell annulus
	Specific gravity of contents
0.98	Effective specific gravity
HG _e )^0.5, 1.28HDG _e )	Overturning resisting force for self-anchored, AWWA Eq. 14-33 [13-37]
_e )^0.5	Projection of annular ring, AWWA Eq. 14-34 [13-38]
OK, < 0.035D	
	Weight of shell acting at base, AWWA Eq. 14-37 [13-41]
0.4A _v )+w _a ))	Anchorage ratio for overturning, AWWA Eq. 14-32 [13-36]
< 1.54, OK Self-Anchored	
56.6 kip	Impulsive seismic base shear
7.8 kip	Convective seismic base shear
	Total seismic base shear, AWAA Eq. 14-27 [13-31]
0.059 g	Convective design acceleration for sloshing, AWAA Eq. 14-49 [13-53]
0.5*D*A _f = 0.89 ft	Minimum height of freeboard, AWWA Eq. 14-48 [13-52]
_n )(1-0.4Av)	Sliding resistance, AWWA Eq. 14-53 [13-57]
<b>P</b> • • • •	
	Safety factor for sliding
ОК, > 1.0	
1-0.4Av)	Steel tank on wood sliding resistance
	Safety factor for sliding
OK, > 1.0	
	$HG_{e}^{0} - 0.5, 1.28 HDG_{e}^{0}$ $e^{0} - 0.5 OK, < 0.035 D$ $0.4A_{v}^{0} + w_{a}^{0} = 0.44 V + W_{a}^{0} = 0.000 \text{ Self-Anchored}$ $56.6 \text{ kip} = 7.8 \text{ kip}$ $0.059 \text{ g} = 0.58 \text{ ft}$ $0.059 \text{ g} = 0.89 \text{ ft}$ $f_{p}^{0}(1 - 0.4 \text{ Av})$ $OK, > 1.0$

### Minimum Design Displacements for Piping:

Upward: 4.0in Downward: 1.0in Horiz. 2.0in AWWA Table 8 [30]



STRUCTURAL ENGINEERING CALCULATION

Mc Mordo tank END

170 of 178

Wind Load:				
h₁/D <b>= 0.53</b>		Determine (	$C_F$ for wind load on Tank	
$C_{F} = 0.60$	C _F = 0.60 Value for n		und cross-section with smooth surfa	ce Fig. 29.5-1 (Fig. 6-21)
K _z = 1.08		Velocity pre	ssure exposure coefficient	Table 29.3-1 (Table 6-3)
q _z = 89.6 psf		Velocity pre	ssure for rigid component, Sect. 7.1	.1 (Strength Level)
F _s = 45.7 psf		Wind force	on structure (Min. 30*C _F )	Eq. 29.5-1 (Eq. 6-28)
$A_{w} = (h_{t}+2ft)(D+1.5f)$	ft) =	567.0 sq ft	Horizontal wind ex	posed area including insulation and protrusions
$V_w = F_s * A_{w=}$	25.9 kip	Equivalent	wind shear at base, Sect. 7.1	
$C_{p} = 0.50$		Average at	tank roof, Figure 27.4-2 (Fig.6-7):	
$F_v = q_z G^*C_{p_z}$	38.1 psf	Vertical win	d force on structure (Min. 30psf)	
$A_r = \pi ((D+1.17ft)^2)$	/4 =	763 sq ft	Roof wind exposed area	
h _l = 0.0 ft			Minimum depth of product	
$W_{I} = \gamma_{w}^{*} \pi D^{2*} h_{i} / 4$	=	0.0 kip	Minimum weight of product	
M _w = V _w *0.55*(h,+	-2ft) + F.,*A.*(	D)/2	Wind overturning moment at base	
M _w = 692.1 kip-ft			5	
M _r = 0.9*D*(W _s +V	vi)/2	Resisting m	oment at base for foundation design	l
M _r = 810.0 kip-ft				
$M_{\rm w}/M_{\rm r} = 0.85$	OK, < 1.0	No Anchora	age Required	
V _s = tan30(W _s +W V _s = 34.6 kip	l)	Sliding resis	stance, AWWA Eq. 15-3 [13-57]	
$FS_s = V_s/V_w$		Safety facto	or for sliding	
FS _s = 1.34	OK, > 1.0	,		
$V_s = \mu_w * \{Ws + W_i\}$ $V_s = 24.0 \text{ kip}$		Steel tank o	on wood sliding resistance	
$FSs = V_s/V_w$		Safety facto	r for sliding when empty	
FSs = 0.93	NG, < 1.0	(OK at 170r	nph wind for Ris¢k Category II)	

Snow Load:

 $w_{ts} = w_s * A_r = 30.8 \text{ kip}$ 

Total snow load

Sect. 7.1.3



 $D/C = q_{max}/q_a$ 

OK, < 1.0

D/C = 0.93

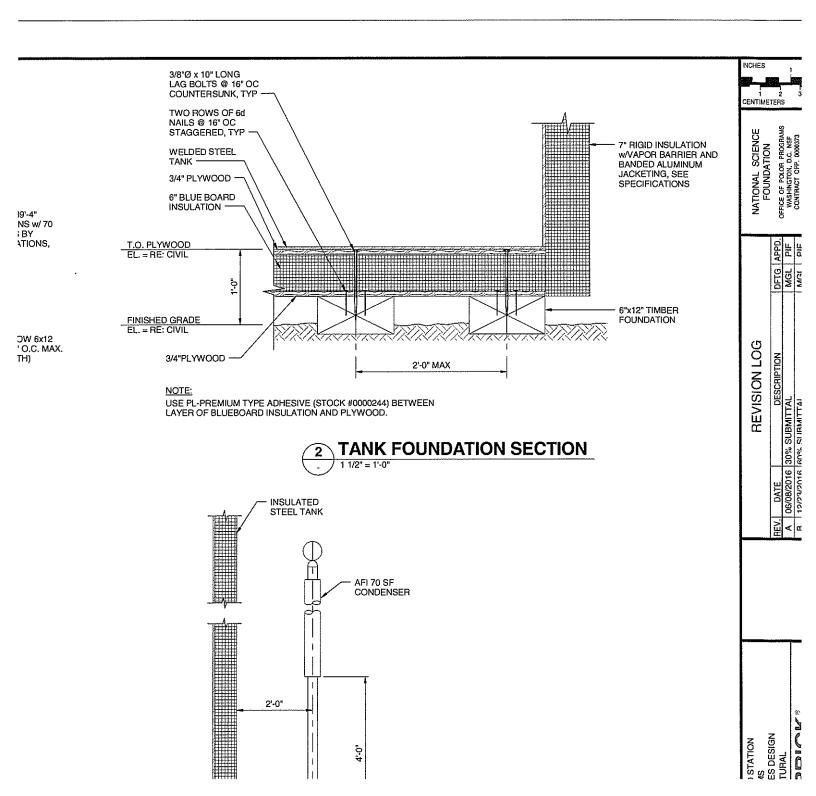
STRUCTURAL ENGINEERING CALCULATION

Name Tank TAID

171 of 178

Round F	ooting Design:				
	t = 0.67 ft	Foundation thickness			
	q _s = 2799 psf	Allowable bearing pressure, Sect. 7.2.1			
	S = 30.17 ft	Diameter of foundation			
	$A = \pi S^2/8 + 30$	Area of footing (taken as 1/2 the area of the foundation plus one row of timbers)			
	A = 387.4  sq ft				
	$S_{d} = \pi S^{3/32}$	Section modulus			
	$S_d = 2696 \text{ ft}^3$				
	$D_{f} = 0.0 \text{ kip}$	Weight of foundation (neglected)			
Seismic	Resistance:				
	$F_{ev} = 0.4A_v^*(W_s + W_p) =$	12.2 kip Vertical seismic force, Sect. 7.1.4			
	$q_{max} = (W_s + W_p + D_f + 0.7F_{ev} + 0.2W_{ts})$	$/A + 0.7(M_e + V_e + 1/2)/S_d$			
	q _{max} = 2064 psf	Maximum bearing pressure			
	$D/C = q_{max}/q_s$	Demand-to-Capacity ratio			
	D/C = 0.74 OK, < 1.0				
	$q_{min} = 0.6(W_s + W_p + D_f)/A - 0.7(M_e)$	+Ve*t/2)/Sd) Min. bearing pressure			
	$q_{min} = 980 \text{ psf}$				
	1081 <b>1</b>				
Wind Re	esistance:				
	$q_{max} = (W_s + W_p + D_f + 0.75 W_{ts})/A + 0$	0.6(M _w +V _w *t/2)/S _d Maximum bearing pressure			
	q _{max} = 2094 psf				
	$D/C = q_{max}/q_s$	Demand-to-Capacity ratio			
	D/C = 0.75 OK, < 1.0				
		,+V _w *t/2)/S _d Min. bearing pressure			
	$q_{min} = -63 \text{ psf}$				
Boorine	Pressure:				
Bearing	q _{max} = W _s +Wp+D _f +w _{ts} /A				
	$q_{max} = 1958 \text{ psf}$	Maximum bearing pressure			
	$q_{max} = 1950  \mu s r$				

Demand-to-Capacity ratio




STRUCTURAL ENGINEERING CALCULATION TANK FAITS

172 of 178

Base Shea	r Fasteners:				
	V _b = max(0.7Ve, 0.4	6Ws) =	40.0 kip		Maximum unfactored base shear
	Z _n = Z*Cd*Cdi =	66lb*1.6*1.1 :	=	116 lb	Allowable shear for 6d nails
	Zi= Z*Cd*Cdi =	220lb*1.6*1.1	=	387 lb	Allowable shear for 3/8in lag screws
	s _n = 0.67 ft		Equivalent na	ail spacing (two	rows)
	s _i = 1.33 ft		Lag bolt space	ping	
	l _t = 377.00 ft		Total length of	of foundation tin	nbers
	v _n = Zn*lt/sn =	65.4 kip			
	v _i = Zl*it/si =	109.8 kip			
t	$D/C = V_b/min(vn,vl)$		Demand-to-C	Capacity ratio	
1	D/C = 0.61	OK. < 1.0			





**MERRIC** & COMPAN

### **Engineering Calculation Sheet**

011-2010A

175 of 178 Sheet of

Date Contract

	MERRICK
Hod	& COMPANY

Date:	6/20/17	Sheet	of	
Project No.:				
By:	PIF			

### FLAGPOLE COLUMN AND CAISSON

Job: Location:	thead u	anll 5		]	
h: Passive: b (diam): d-(trial depth):	0.66 ft 6.00 ft	A= 4. S1= 80 S3= 24 SP= 30 d= 5.	00 psf 100 psf 00 psf	S1 < Passive Pressure x 15, OK S3 < Passive Pressure x 15, OK Gravity Soil Bearing	Unconstrained Constrained
	0 lbs no	M =	1662	#-ft	
E: Ireq= USE=	0.06 in 35 ksi 29000 ksi 2.0096 in^4 PIPE 3 STD 3X3X3/16	TI	JBE STEEL		

Frop = 454 (2) = 908 4

Use  $3'' \neq x$  strong soldier Piles Speced at z' oc max  $W'_1 = 6'' Max Herglif \neq$  6' curbed ment M = 1462 = 26 k-m  $M_n = \#_3 = 26 \text{ k-m}$  = 14655 k-m  $M_n = \#_3 = 26 \text{ k-m}$   $M_n = \#_3 = 82.7 \text{ k-m}$   $M_n = 4.6 \text{ k-m}$  $M_$  **MERRICK**[®] & COMPANY

# Engineering Calculation Sheet

Date 3/27 Sheet7 of 178 of Contract 7481-77

011-2010A

Calculatio	n No.	

subject McMurdo	Revision	Ву	Date	Chk'd	Date
		四步			
Vtilities					
					· · · · ·
check timber	walls	·	: 		,
	(15)	·····			· · · · · · · · · · · · · · · · · · ·
	65(.5) #15t = 83 #15t				• · · · · · · · · · · · · · · · · · · ·
		FR-			·····
L K K			1	······ ·······························	•••••••••••••••••••••••••••••••••••••••
		× ×		· · ·	
· · · · · · · · · · · · · · · · · · ·	<u>}</u>				·····
ZAU					
				· · · · · · · · · · · · · · · · · · ·	·····
N= 83/24/2			5	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
M= 33 (24/12) ²			Cq=	165P	-1
6	an a				····· ÷ ···· ÷ · ··
= 71.5 #-56	na na shekara da ka shekara na shekara qara s Tan sa ta Tan sa		· · · · . · · · · · · · · · · · · · · ·		
- 498 #-14		11/	· · · · <del>·</del> · · · · · · · · · · · · ·		
			6x6	TIME	245
			5=	22.23 1	u3
V=:83(2/2)	- 3	extra	estre	20 mil	
			1		
= 63 #	- 6	ype é	- 1-	9"02	<i>w</i> ⁴
			·	arta da	
Fb=Fb Cd Cm C	C, CLC=	Ci=	. 9	· · · · · · · · · · · · · · · · · · ·	
				· · · · · · · · · · · · · · · · · · ·	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
F6 = 750 pari		Cm	= 1.0	· · · · · · · · · · · · · · · · · · ·	
	·	CE	=	·	
F1= 750 (.9)					
••		CL		t. Geografia	·
= 676 850		CF.	·····		
11 ABA	: 	: ¥ 	× .	······	· · · · · · · · · · · · · · · · · · ·
Sp = 498/27.73	= 18 P51	 		· · · ·	· · · · · · · · · · · · · · · · · · ·
127.73	115				
n an	110	F	<b>.</b>		
1 2 3 4 5 6 7 8 9 10	11 12 13 14 15 / 16 17	18 19 20	21 22 23	24 25 26	27 28 29



# **Engineering Calculation Sheet**

Date 3/27 Sheet8 of 178 of Contract 7481-27

011-2010A

Cal	leul	lation	No	
<u>u</u> u				

Subject Mc Murdo	Revision		Date (	Chk'd [	Date
Vilidits		TBF			
1		· .			:
2 Chuck Chicar			· · · · · · · · · · · · · · · · · · ·		
3					
4 FV = 176 - PSL		: 		· · · · · · · · · · · · · · · · · · ·	
5	· · · · · · · · · · · · · · · · · · ·				
$\xi_{V} = \frac{163}{5} = 2.7$	poi le	facy	: 	ter en	
7 (5.5)	-4-	1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -	<del></del>		
8		· · · · · · · · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·	
" Check Beening					·····
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
$\frac{1}{12} = 700 = Foi$	· · · · · · · · · · · · · · · · · · ·				·····
<b>1</b>				····· · · · · · · · · · · · · · · · ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O PSi	dean		• · · · · · · · · · · · · · · · · · · ·	
$15 \qquad \qquad 15 \qquad \qquad 10(5.5)$		and the second second second		••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •
16	·····		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	····· • • ··· · ·
17	······································				
18 12me CXC	le tot #	e the	ndoar 4	<b>)</b>	:
19 10	r Bedraun	n leal		·····	
20		<u>)</u>	\ 	<u></u>	: 
21	an a	i	Annor 2 is control of the second s	·····	
22			· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·				
24 For Gold Lev File	· · · · · · · · · · · · · · · · · · ·		·		
26		)	~~~>	ii	
27 000 1000 1000	s exfra fr	broug	tipe	: ــــــــــــــــــــــــــــــــــــ	
28	le turba	d me			
29	eee pipir	se.	2-0"	°C	
30 · · · · · · · · · · · · · · · · · · ·	e Fallowin	is Pri	ubort	**************************************	
31					
32					· · · · · · · · · · · · · · · · · · ·
33					
1 2 3 4 5 6 7 8 9 10 11 12	13 14 15 16 17 18	19 20 21	22 23 24	25 26 27	28 29



### **Technical Calculations**

**E001-Electrical** 

Calculation Title: McMurdo Station Antarctica Street Lighting 7/19/2017

> Prepared For: NSF/ASC

### **Prepared By:**

Merrick & Company 5970 Greenwood Plaza Blvd. Greenwood Village, Co 80111-4703



## TABLE OF CONTENTS

1
2
3
5
6
7
8
9
11

### <u>APPENDIX</u>

Lighting Calculations

#### EXECUTIVE SUMMARY

IES RP-8-14 Roadway Lighting Standard for local street classification with medium pedestrian traffic was the bases of design for McMurdo Station street lighting. The proposed light pole configuration is a LED light fixture mounted on a 20-ft steel tapered pole with a 2-ft cyclical concrete base. The concrete base will consist of a finished surface of 3-ft above ground to provide traffic protection. Light poles have been placed throughout the site impacted by new construction for general lighting along all roadways. Detail wiring for each fixtures is not provided as part to the site infrastructure design. Wiring details will be provided during new construction. Final determination of street lighting will be determined during building construction to determine if light fixture should be mounted on a building structure or remain on the proposed light pole location.

### **SECTION 1 INTRODUCTION**

New street lighting will be provided throughout McMurdo Station will meet IES RP-8-14 Roadway Lighting Standard for local street classification with medium pedestrian traffic as specified in Table 3 below:

STREET CLASSIFICATION	PEDESTRIAN AREA	AVG. LUMINANCE L _{avg} (cd/m ² )	AVG. UNIFORMITY	MAX. UNIFORMITY RATIO Lmax/Lmin	MAX. VEILING LUMINANCE
	CLASSIFICATION		RATIO Lavg/Lmin		RATIO LV _{max} /L _{avg}
MAJOR	HIGH	1.2	3.0	5.0	0.3
	MEDIUM	0.9	3.0	5.0	0.3
	LOW	0.6	3.5	6.0	0.3
	HIGH	0.8	3.0	5.0	0.4
COLLECTOR	MEDIUM	0.6	3.5	6.0	0.4
	LOW	0.4	4.0	8.0	0.4
	HIGH	0.6	6.0	10.0	0.4
LOCAL	MEDIUM	0.5	6.0	10.0	0.4
	LOW	0.3	6.0	10.0	0.4

#### Table 3. Lighting Design Criteria for Streets

 $L_{\text{avg}}$  - minimum maintained average pavement luminance

L_{min} - minimum pavement luminance

LV_{max} - maximum veiling luminance

Light fixtures will be placed throughout all areas impacted by new construction. Detail wiring for each fixtures is not provided as part to the site infrastructure design. Wiring details will be provided during new construction. Final determination of street lighting will be determined during building construction to determine if light fixture should be mounted on a building structure or remain on the proposed light pole location.

## **SECTION 2 GENERAL CRITERIA**

### **SECTION 3 DESIGN INPUT**

The design inputs are as follow:

- 20-ft round-tapered pole mounted on a concrete base with a finish surface 0f 3-ft above ground. Total light fixture height is 23-ft.
- IES R8-14 Roadway Lighting design criteria has specified the light levels as indicated in Table 3 listed above.
- The project RFP has specified LED type light fixture for exterior roadway lighting.
- Vendor data sheets for the selected light fixtures will be used as data input into the Lighting Analysts Illumination Engineering Software (AGi32) for roadways analysis.
- Total light loss factor = 0.75
  - $\circ$  Luminaire Dirt Depreciation (LDD) = 0.900
  - Luminaire Ambient Temp. Factor (LATF) = 0.980
  - Lamp Lumen Depreciation (LDD) = 0.850
- Lumen Arm Length = 1.625'
- Road Classification: Type III, Short
- Upward Waste Light Ratio = 0.0

### **SECTION 4 METHODOLOGY**

Merrick conducted a detailed calculation using scaled AutoCAD site drawings and AGI lighting software. IES lighting files for the specified light fixtures were used in the lighting model calculate the results. Multiple lighting iterations and fixture placement were performed to determine the specified location for each light fixture.

### **SECTION 5 REFERENCES**

CODES, STANDARDS, REFERENCES:

- UFC 3-501-01 (6 Oct 2015) Electrical Engineering
- NFPA 70E Standard for Electrical Safety in the Work Place
- NFPA 70 National Electrical Code 2014
- IESNA (Illuminating Engineers Society of North America) Lighting Handbook (10th
- Edition)
- IESNA (Illuminating Engineers Society of North America) IES RP-8 Roadway Lighting

### **SECTION 6 CONCLUSIONS**

The light level calculations meeting the input criteria produced the following results as summarized below:

Calculated Road Luminance:

- Local Street Classification with Pedestrian Area Classification
  - Avg. Luminance =  $5.0 \text{ cd/m}^2 > .5$  (Table 3 below)
  - Avg. Uniformity = 5.0 cd/m < 6.0 (Table 3 below) (using 1 cd/m² for min)
  - Lmax/Lmin= 28.4>10 (Table 3 below) (Due to spacing needed to lower Avg)
  - Veiling Luminance = 5.6 < 0.4 (Table 3 below)
  - Illuminance Max/Min = 2.0 > 1.4 (Table 8 below) (Due to spacing needed to lower Avg)
  - Illuminance Eavg/Emin = 1.48 < 6.0 (Table 8 below)

STREET CLASSIFICATION	PEDESTRIAN AREA CLASSIFICATION	AVG. LUMINANCE L _{avg} (cd/m ² )	AVG. UNIFORMITY RATIO L _{avg} /L _{min}	MAX. UNIFORMITY RATIO L _{max} /L _{min}	MAX. VEILING LUMINANCE RATIO LV _{max} /L _{avg}
MAJOR	HIGH	1.2	3.0	5.0	0.3
	MEDIUM	0.9	3.0	5.0	0.3
	LOW	0.6	3.5	6.0	0.3
	HIGH	0.8	3.0	5.0	0.4
COLLECTOR	MEDIUM	0.6	3.5	6.0	0.4
	LOW	0.4	4.0	8.0	0.4
	HIGH	0.6	6.0	10.0	0.4
LOCAL	MEDIUM	0.5	6.0	10.0	0.4
	LOW	0.3	6.0	10.0	0.4

#### Table 3. Lighting Design Criteria for Streets

Lavg - minimum maintained average pavement luminance

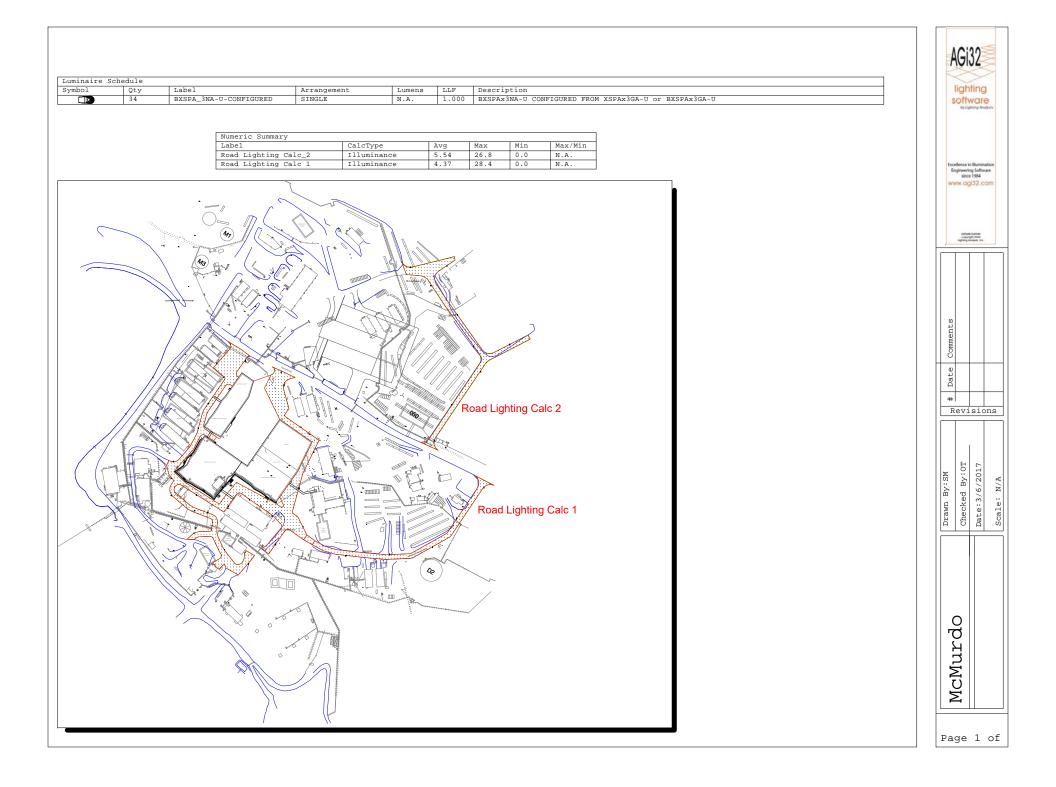
L_{min} - minimum pavement luminance

 $\ensuremath{\text{LV}_{\text{max}}}\xspace$  - maximum veiling luminance

#### Table 8. Illumination for Intersections

Illumination for Intersections								
Functional Classification	Average Ma Pedest	E _{avg} /E _{min}						
	High		Medium		Low			
Major/Major	34.0/3.4		26.0/2.6		18.0/1.8	3.0		
Major/Collector	29.0/2.9		22.0/2.2		15.0/1.5	3.0		
Major/Local	26.0/2.6		20.0.2.0		13.0/1.3	3.0		
Collector/Collector	24.0/2.4		18.0/1.8		12.0/1.2	4.0		
Collector/ Local	21.0/2.1		16.0/1.6		10.0/1.0	4.0		
Local/ Local	18.0/1.8		14.0/1.4		8.0/0.8	6.0		

Note: The High, Medium, and Low Pedestrian Areas are described in Section 5.1.1.


Lighting design did not meet all design criteria specified in IES RP-8-14 due to irregular road shapes and turns, and the needed average Illuminance. An acceptable average luminance was calculated with minimal dark spots. There are minimums of 0 due to spacing needs, and assumptions that there are or will be lighting on the exterior of buildings where the road connects to. There are many intersections where the new lighting is not being applied. It is assumed that there is existing lighting at the intersection at the continued roadway.

## **SECTION 7 CALCULATIONS**

See Appendix.

### APPENDIX

# **Lighting Calculations**





### **Technical Calculations**

E004-Electrical

Calculation Title: McMurdo Station Antarctica Coordination Study

> Prepared For: NSF/ASC

### Prepared By:

Merrick & Company 5970 Greenwood Plaza Blvd. Greenwood Village, Co 80111-4703





Subject:	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

## TABLE OF CONTENTS

TABLE OF CONTENTS	1
SECTION 1 EXECUTIVE SUMMARY	2
SECTION 2 INTRODUCTION	4
SECTION 3 GENERAL CRITERIA	5
SECTION 4 DESIGN INPUT	6
SECTION 5 METHODOLOGY	7
SECTION 6 REFERENCES	8
SECTION 7 CONCLUSIONS	9
SECTION 8 CALCULATIONS	10



Subject:	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

### SECTION 1 EXECUTIVE SUMMARY

Coordination study was conducted for McMurdo Station based on existing over protective devices (OCP's) and trip settings. It is not the intent of this study to adjust existing trip setting on overcurrent protective devices located on each generator output and feeder breakers located in McMurdo Power Station. Exterior padmounted equipment (SW-1 thru SW-6) located adjacent to the existing power plant have existing fuse protection and will be modeled as is and will not be replaced as part of the AIMS project. All new equipment will be coordinated with existing equipment. Modifications to 5kV OCP's will remain as is and new adjustments to this equipment will be deferred to future power station upgrades or stability studies.

McMurdo's power system is a micro-grid independent from commercial power stations tied into larger grids. Micro-grids have limited power generation capability and sensitive to power disturbances if not properly managed. Power management techniques must be applied at a micro level that includes building load leveling, starting kVA management, and properly coordinated system to ensure fault conditions are eliminated as close to the fault as possible. Micro-grids are subject to system de-stabilization when an un-coordinated system shuts down large sections of the grid when a lower level device failed to isolate the system.

OCP's devices are coordinated from the first device usually located at generator output down to the last device located ahead of the building connected load. McMurdo power plant existing generators have OCP's trip points set to protect each generator. These set points also limits the largest service transformer that can be installed without compromising overall system coordination. As a result, findings indicate that a 500kVA transformer is the largest transformer that can be installed without compromising system coordination with McMurdo station generators. Careful selection of fuse devices or more advanced OCP equipment may increase the largest transformer to a 750kVA. Long-term system stability and coordination will be achieved when equipment is specified within the limits of the microgrid.



Subject:	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

Fault current calculations identified low fault currents for B166, B167, and B188. The fault currents were evaluated as part of the coordination study and preliminary results indicates these buildings are subject to system failures and possible fire hazard if an OCP does not clear a fault condition in a timely manner. Fault currents to branch breakers are below 300-amps, which would trip a breaker with a bolted fault in approximately 40 seconds far exceeding the preferred 0.01 to .5 second time-period. Brand circuits with high impedance faults will extend the trip time with high risk of a building fire.



Subject:	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

### **SECTION 2 INTRODUCTION**

### CODES, STANDARDS, REFERENCES:

- UFC 3-501-01 (6 Oct 2015) Electrical Engineering
- UFC 3-550-01 UFC 3-550-01 Exterior Electrical Power Distribution (1 September, 2-16)
- NFPA 70E Standard for Electrical Safety in the Work Place
- NFPA 70 National Electrical Code 2014
- IEEE Std 399 Recommended Practices for Industrial and Commercial Power System Analysis.
- IEEE 242-2001 IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems (IEEE Buff Book)

Merrick conducted a coordination study based on existing OCP trip settings. All devices were modeled in EasyPower[™] and Time Current Curves (TCC's) were created from existing conditions. The existing devices modeled are:

- 1. Generator output breakers: GE Multilin SR489
- 2. 5kV Service Feeder Breakers: GE Multilin SR735
- 3. Pad-mounted Feeder Switches: Cultler-Hammer fuses, Type CL, Style CLE, Current limiting, 250E
- 4. 5kV Overhead Fuse Cutouts: AB Chance Fuse Link, Model K
- Service Transformer primary fuses (Either or combination of sized at 1.25% primary rated current: Cooper, Current Limiting, Style NX, C-Rated and/or AB Chance Fuse Link, Model K.

The coordination study was based on the standard fuses used by McMurdo and the intent of this study is to maintain the standard fuse for new installation unless otherwise determined by the new building design.



Subject:	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

### **SECTION 3 GENERAL CRITERIA**

The existing site will remain in operation during all AIMS phased construction. The modeling will be performed based on the following assumption:

- 1. Existing overhead feeders scheduled to remain will be modeled for system coordination.
- 2. Scott Base and Wind Turbines will not be considered as power generation into the system model.
- 3. McMurdo power plant is operating voltage at nominal voltage of 4.16kV.
- 4. Merrick was informed by McMurdo Site utilities that existing transformers do not have load tap changers. Therefore, fault currents will be calculated based on standard tap settings and reflected on to TCC curves.
- 5. Transformer impedance data is not available. All calculations will be based on an assumed 5% impedance on transformers. Therefore, fault currents will be calculated based on a typical impedance value and reflected on to TCC curves.
- EasyPower[™] model generated by this study will be used for further system dynamic and stability studies where the coordination study can be adjusted to best meet system performance.



Subject:	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

### **SECTION 4 DESIGN INPUT**

- 1. Existing feeder conductors sizes, distances, and configuration provided by as-built drawings and field verification results gathered during Merrick's 2017 McMurdo deployment.
- 2. Existing transformers sizes and rated nominal voltage rating.
- 3. Individual transformer impedances are not available; therefore, an assumed input of 5% impedance.
- 4. Generation equipment will be modeled based on on-site data collection and data provided by the owner.
- 5. Individual kW demand data is not available for each building. Peak demand will be based on onsite survey of each building, building square footage, UFC standards, and available onsite power flow data.
- 6. Individual Generator impedance data will be incorporated into the model with an adjusted KW rating due to fuel source.
- 7. EasyPower[™] Set points:
  - a. Bus under voltage=0.95pu
  - b. Bus over voltage= 1.05pu
  - c. Overload Threshold= -10% of rating
- 8. All devices are modeled in EasyPower[™] and Time Current Curves (TCC's) are created from existing OCP trip devices and trip settings: The existing devices modeled are:
  - a. Generator output breakers: GE Multilin SR489
  - b. 5kV Service Feeder Breakers: GE Multilin SR735
  - c. Pad-mounted Feeder Switches: Cultler-Hammer fuses, Type CL, Style CLE, Current limiting, 250E
  - d. 5kV Overhead Fuse Cutouts: AB Chance Fuse Link, Model K
  - e. Service Transformer primary fuses (Either or combination of sized at 1.25% primary rated current: Cooper, Current Limiting, Style NX, C-Rated and/or AB Chance Fuse Link, Model K.



Subject:	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

### SECTION 5 METHODOLOGY

An EasyPower[™] electrical model for McMurdo Station will be developed that includes all system components of the existing 5kV distribution system. Existing trip devices will be modeled with their current settings and not intended to be modified as part of this study. Fault currents will be evaluated against the trip setting of each device for selection of new OCP devices. OCP's will be evaluated for system application when used by small scale reciprocating application similar to McMurdo Stations. Manufacture equipment available interrupting rating (AIC's) of electrical equipment is subject to specified system impedances typically lower than offered by a power plant similar to McMurdo. As a result, manufacturer AIC ratings must be adjusted to the install system to ensure proper selection of installed devices.

The study will provide a typical TCC curves for key components for distribution system and are as follow:

- 1. 1200kW/1500kVA Engine Generator/5kV Swtichgear
- 2. 1400kW/1750kVA Engine Generator/5kV Switchgear
- 3. 1000kVA Service Transformer
- 4. 750kVA Service Transformer
- 5. 500kVA Service Transformer
- 6. 300 kVA Service Transformer
- 7. 225kVA Service Transformer
- 8. 150kVA Service Transformer
- 9. 112.5kVA Service Transformer
- 10. 75kVA Service Transformer



Subject:	McMurdo Station Load Flow Study				
Project No.:	6401748177	Calculation No.:	E002	Rev:	0

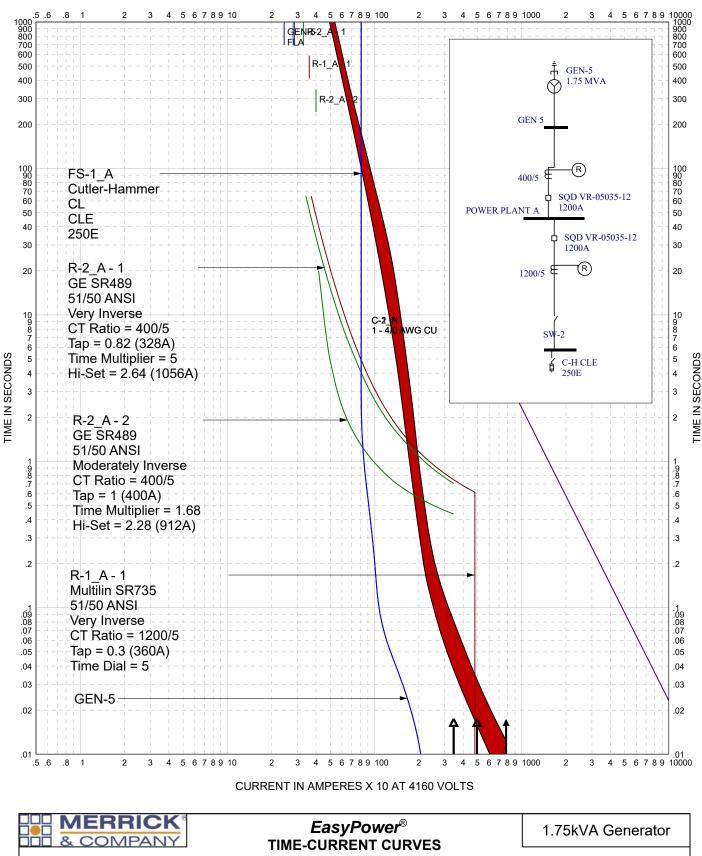
### **SECTION 6 REFERENCES**

Refer to Section 2 Introduction.

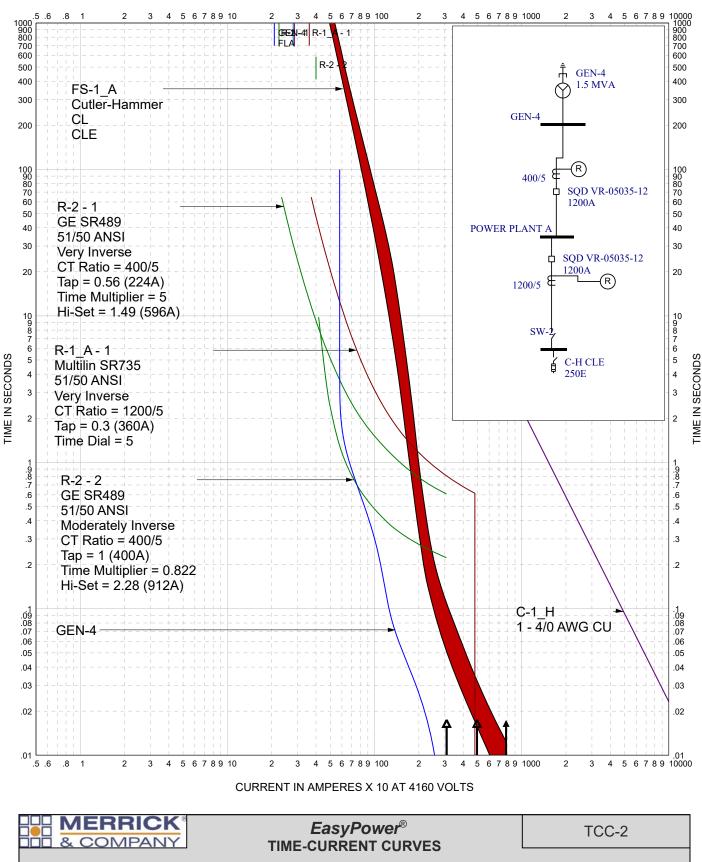


Subject:	McMurdo Station Load Flow Study				
Project No.:	6401748177	Calculation No.:	E002	Rev:	0

### **SECTION 7 CONCLUSIONS**

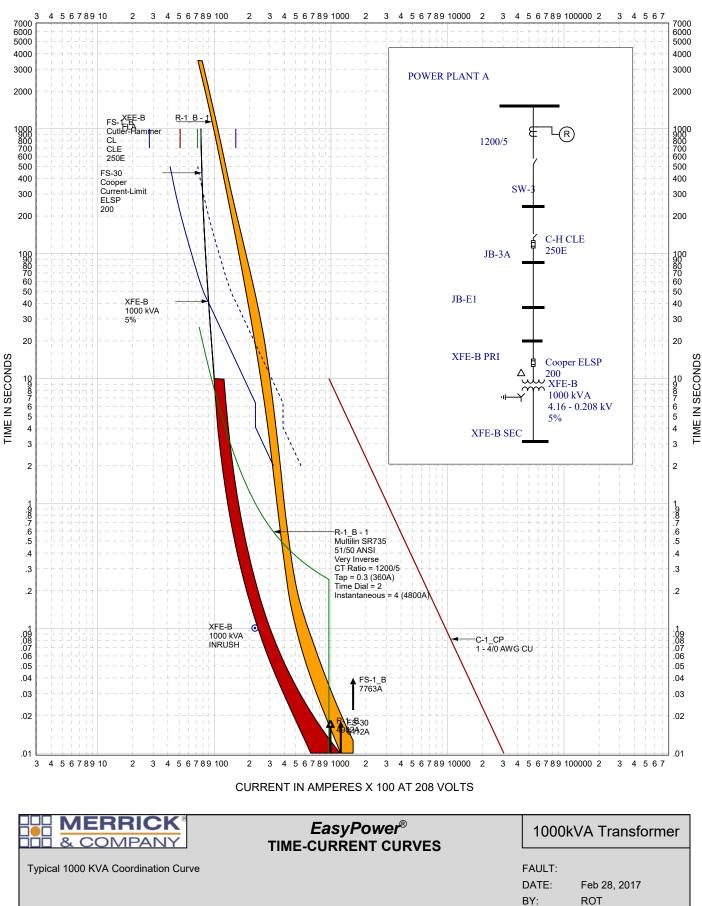

Generator output breakers limit the size of all downstream devices for micro-grids when full system coordination is required. As a result, downstream devices are limited in size thereby reducing the sizes of service transformers that can be used without compromising overall system coordination. The coordination study revealed that a 500kVA transformer offers the optimum system coordination with the existing power plant. Transformer larger than 500kVA become problematic when coordinating transformer inrush currents and primary fuses with existing feeder breakers/fuses and existing generator output breakers. McMurdo future development of the micro-grid will provide long-term system reliability and system stability if the system is fully coordinated. Proper selection of transformer and transformer protection device will contribute to the overall long-term system performance.



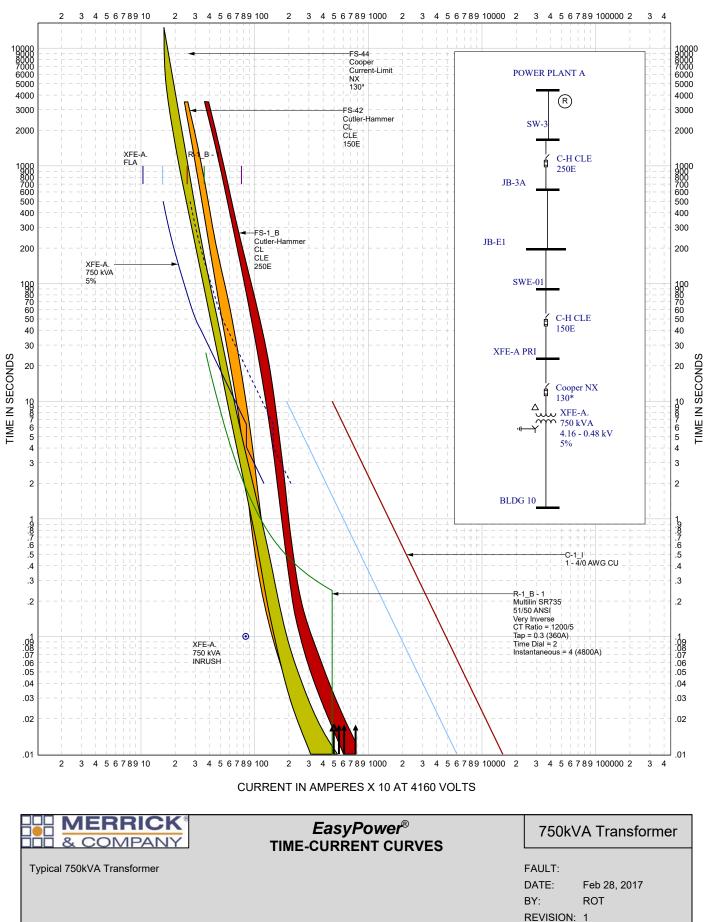

Subject:	McMurdo Station Load Flow Study				
Project No.:	6401748177	Calculation No.:	E002	Rev:	0

## **SECTION 8 CALCULATIONS**

CURRENT IN AMPERES X 10 AT 4160 VOLTS

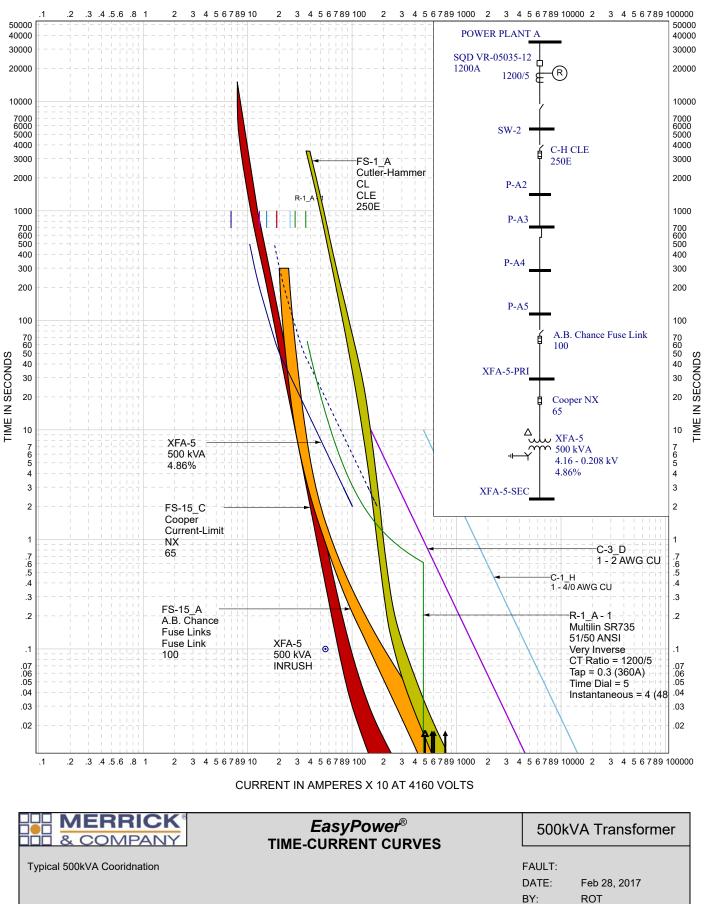



FAULT: DATE: Mar 01, 2017 BY: REVISION: 1



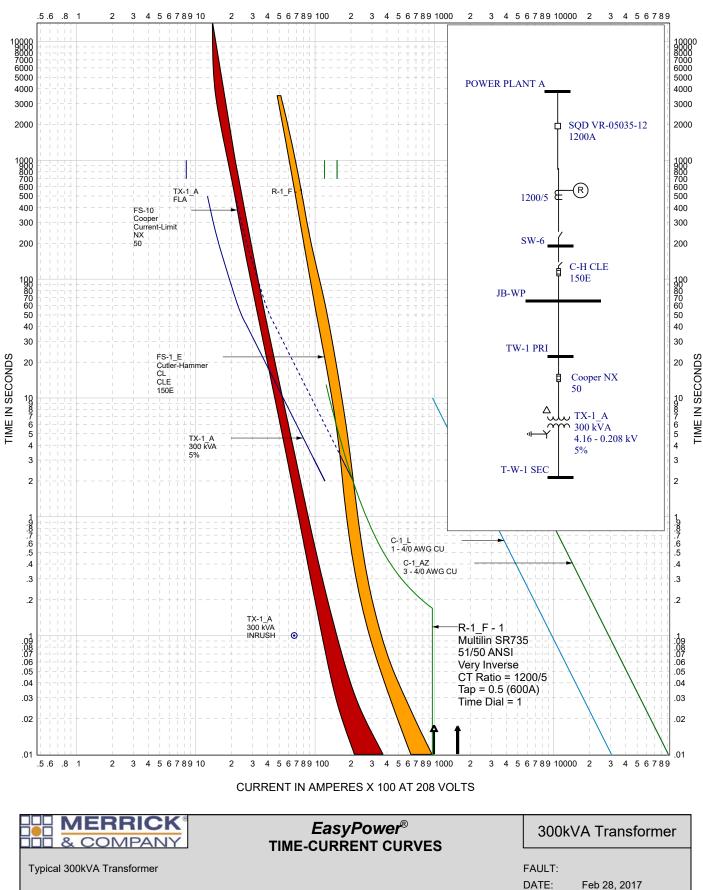

FAULT: DATE: Mar 01, 2017 BY: REVISION: 1

#### CURRENT IN AMPERES X 100 AT 208 VOLTS




**REVISION: 1** 



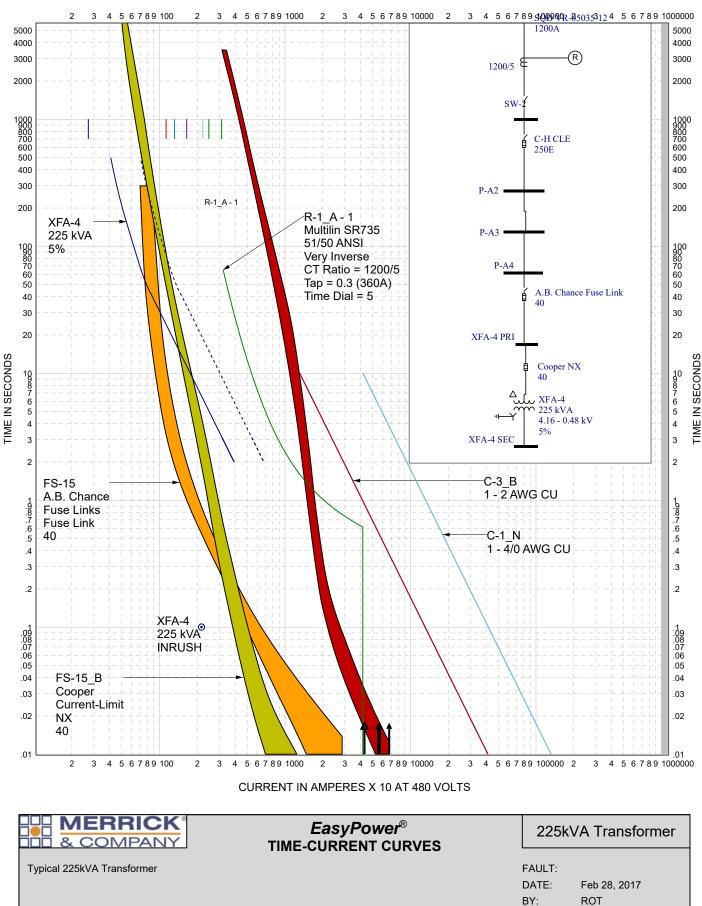

CURRENT IN AMPERES X 10 AT 4160 VOLTS

#### CURRENT IN AMPERES X 10 AT 4160 VOLTS



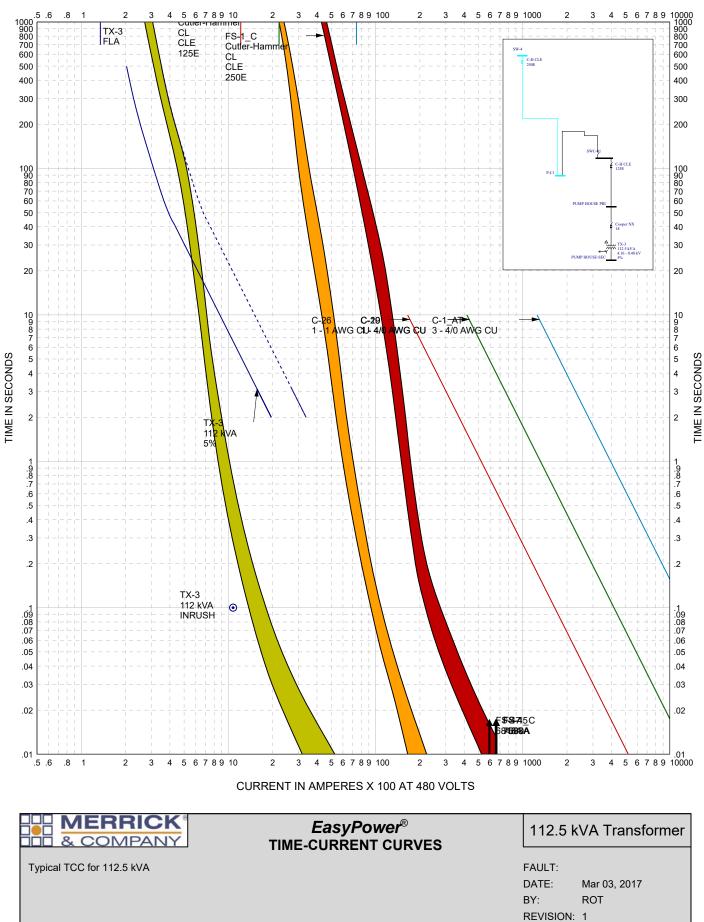
**REVISION: 1** 

CURRENT IN AMPERES X 100 AT 208 VOLTS

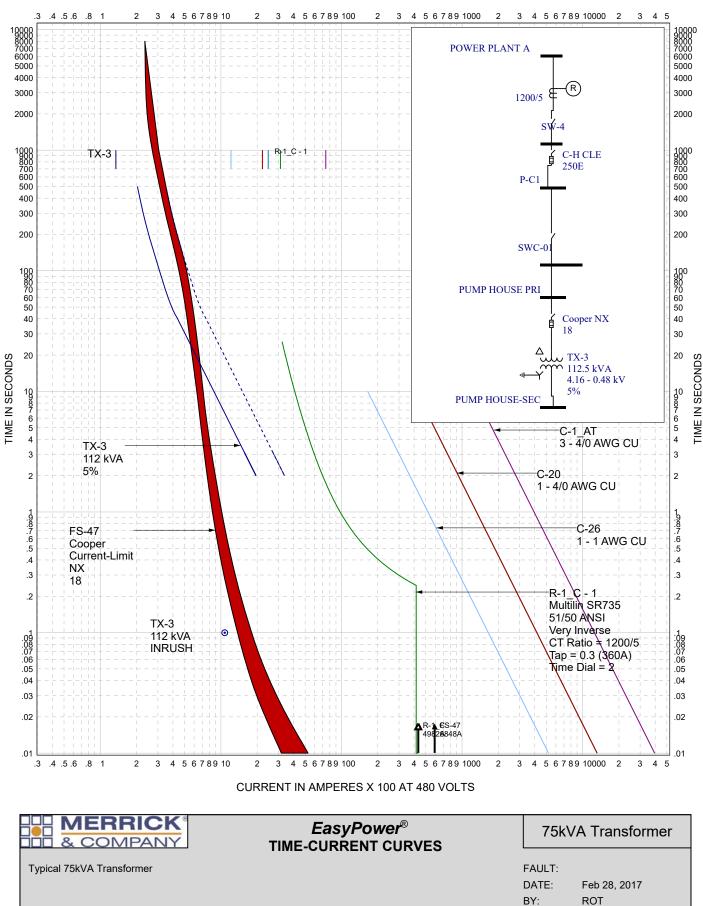



BY:

**REVISION: 1** 


ROT

CURRENT IN AMPERES X 10 AT 480 VOLTS




**REVISION: 1** 

#### CURRENT IN AMPERES X 100 AT 480 VOLTS



CURRENT IN AMPERES X 100 AT 480 VOLTS



**REVISION: 1** 

# LAFAYETTE POWER SYSTEMS

	0.5.0	on on or or	CURCAIL	mo mi	augement ive	. SAF 10004	475
	Co	mpleted by:	MSR		2-Feb-04 Power	Generator	
Excitation PM	<b>Volts</b> 4160	Kilowatt 1130	Appl.	Frequency 60		Frame 825	
<b>Type</b> SR4B	<b>Pitch</b> 0.6667	Poles 4	Synchronous Speed 1800		Number of Bearings 2	Winding Type Form	Enclosure Type IP22
		Number	Wires			SAE Mounti	ng
Connection		of Leads	Per Lead		Flywheel No.		Housing No.
STAR		6	1		521	2	"00"
********	0		· · · · ·				
			ficiency at (		r Factor		****
	1	Per NEMA	and IEC at	115 ° C			
		Load					
		Per Unit	Kilowatts		Efficienc	cy (%)	
		0.00	0.0		0.0		
		0.25	282.5		92.4		
		0.50	565.0		95.5		
		0.75	847.5		96.4		
		1.00	1130.0		96.7		
		1.25	1412.5		96.8		
*******	0	Generator I	Resistances a	and Reacta	ances		*****
Resis	tances at 2	5°C	Generat	or Impedan	ce	Short Circuit	
Stator (Ohms)	F	ield (Ohms)		ase Ohms		Ratio	
0.0545		1.01524		12.2518		0.5698	
			Reactances				
					Per Unit	Ohms	
Subtransient -				X''D	0.1086	1.3309	
Subtransient - Quadrature Axis				X''Q	0.0915	1.1215	
Transient - Saturated			X'D	0.1518	1.8594		
Synchronous - Direct Axis			XD	2.1384	26.1994		
Synchronous -		ire Axis		XQ	1.0051	12.3139	
Negative Sequ				X2	0.1001	1.2263	
Zero Sequence	9			X0	0.0022	0.0271	

GENERATOR SPECIFICATIONS -- Arrangement No. SAP 10004475

.

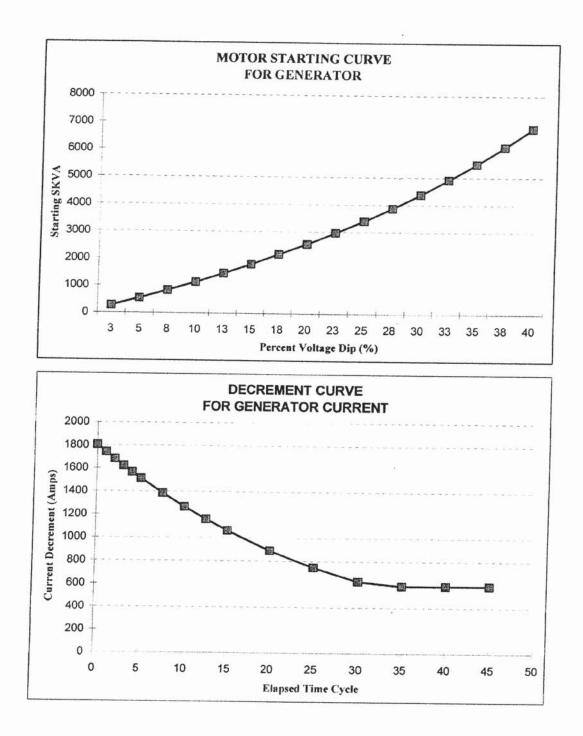
Page 1 of 5

******		Generator Tin	ie Con	stants		*******
Onen Circuit Tr	ansient - Direct A	vio				Seconds
	ansient - Direct A			22.V	T'DO	6.66483
					T'D	0.47303
Open Circuit Subtransient - Direct Axis Short Circuit Subtransient - Direct Axis					T"DO	0.01576
	btransient - Qua				T''D	0.00199
Short Circuit Su	btransient - Qua	drature Axis			T''QO	0.01069
Armature Short		alature Axis			T"Q	0.00003
	Chould				TA	0.04433
******		Excitation				******
		No	Load	0.8 PF		
	Excitation	Voltage	8	22		
	Excitation	Current	1.5	4.1		
****		Ratings				*****
Line	-to-Line Voltage		4160	Valt		
Line-to-Neutral Voltage			2402			
KVA Rating			1413			
	d RMS Current (	3 Phase)		kv A Amps		
		en en el en el en el Anne		Amps		
*****	Voltage R	egulation and Acc	curacy			*********
Voltage Level Adj		Constant Speed	,	With 3 Perce	ent Speed Ci	hange
+/- 5 percent of ra	ated	+/- 1 percent		+/- 2 percen		0
Waveform Deviati		No Load	1	Felephone In	fluence Fac	tor
Less	Than 5 Percent			1773	Less Than	
*****	Mecha	nical Information	1			******
	1 22	Center of Gravity	(			
	ension X	Dimension Y		Dimensi		
-105	4.1 mm	0.0 mm		0.0	mm	
Gener	ator Weight	<b>Rotor Weight</b>		Stator We	ioht	
	76 <b>kg</b>	1775 kg		3101		
48						
	lance		0	verenced Co	no oltr	
48 Rotor Ba 0.025 mm D		1		verspeed Ca ent of Sync		and

3

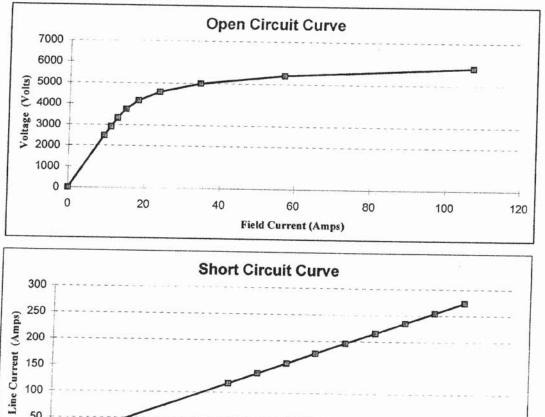
( )

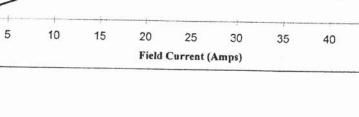
Page 2 of 5


******	Generator Cooling Requirements			********
	Heat Dissipated 38.23 KW	Airflow Reg 162.36 cu	uired	
******	Generator Tempe	rature and Insula	ntion Data	**********
Stator Rise (°C) 80	Rotor Rise (°C) 80	Insulation Class (°C) 155	as Sl . 100.0 M	tion Res. hipped egaohms t 40°C

(

Generator Motor Starting Capability		<b>Generator Current Decrement Data</b>			
		Base V	oltage = 4160		
		Elapsed	Decrement		
Percent	Across the Line	Time	Current		
Voltage Dip	Starting SKVA	(Cycles)	(Amps)		
2.5	262	0.0	1805		
5.0	537	1.0	1742		
7.5	827	2.0	1682		
10.0	1134	3.0	1624		
12.5	1458	4.0	1567		
15.0	1801	5.0	1513		
17.5	2165	7.5	1386		
20.0	2551	10.0	1269		
22.5	2962	12.5	1162		
25.0	3401	15.0	1064		
27.5	3871	20.0	892		
30.0	4373	25.0	748		
32.5	4913	30.0	627		
35.0	5495	35.0	588		
37.5	6122	40.0	588		
40.0	6803	45.0	588		


Instantaneous three phase symmetrical fault current:	1805 (Amps)
Instantaneous line to neutral symmetrical fault current:	2788 (Amps)
Instantaneous line to line symmetrical fault current:	1625 (Amps)


Page 3 of 5



Page 4 of 5

<b>Open Circuit Curve</b>		<ul> <li>Short Circuit Curve</li> </ul>			
Field Current	Voltage	Field Current	Line Current		
(Amps)	(Volts)	(Amps)	(Amps)		
0.0	0	0.0	0		
9.3	2496	19.1	118		
11.0	2912	22.3	137		
12.7	3328	25.5	157		
14.9	3744	28.6	176		
18.1	4160	31.8	196		
23.7	4576	35.0	216		
34.4	4992	38.2	235		
57.0	5408	41.4	255		
107.0	5824	44.6	274		





Page 5 of 5

 $( \ )$ 

## LAFAYETTE POWER SYSTEMS

Excitation PMEventual Volts 4160Kilowatt 1640Appl. Appl.Frequency Factor 60Power Factor 0.80Generator Frame 825Type SR4BPitch 0.6667Poles 4Synchronous Speed 4Number Speed 1000Number of Bearings 2Windig Type BEnclosure Type IP22Connection STARNumber of Leads 6Wires Per Lead 6Number Per Lead 1Number SAE Mounting Toposition 521Windig Type BEnclosure Type Type BConnection STARNumber of Leads 6Wires Per Lead 6State Nonsing No. 0.00 0.0Number SAE Mounting Toposition 0.00Number SAE Mounting Type Mousing No. 0.00Per Ver Per NEM- 0.00Kilowatts 0.00Efficiency (%) 0.00Number 0.00Mousing No. 0.00Dist Stater (Dist)Kilowatts Per Unit 1.01524Efficiency (%) 0.00Number 96.8Short Circuit Ratio 0.03Stater (Dist) Subtransient - Direct Axis Subtransient - Direct Axis Synchronous - Direct AxisY"D X""D 0.1577Short Signs 1.3309 1.1216Subtransient - Direct Axis Synchronous - Direct Axis Synchronous - Direct Axis Synchronous - Direct Axis Synchronous - Need Air Synchronous - Need Air <th></th> <th>GEN</th> <th>ERATOR SP</th> <th>PECIFICATIO</th> <th>DNS Ari</th> <th>angement No</th> <th><b>b.</b> 1000445</th> <th>1</th>		GEN	ERATOR SP	PECIFICATIO	DNS Ari	angement No	<b>b.</b> 1000445	1
Excitation PMVolts 4160Kilowatt 1640Appl. 		Co	mpleted by:	MSR		1000	Concretor	
Type SR4BPitch 0.6667Poles 4Speed Speed 1800Number of Bearings 2Winding Type FormEnclosure Type IP22Connection STARNumber of Leads 6Number Per Lead 6Flywheel No. 521SAE Mounting Housing No. "00"Connection STARGenerator Efficiency at 0.80 Power Factor Per NEMA and IEC at 115 ° C*********************************		10 17 7 7 7		Appl.		Factor	Frame	
Type SR4BPitch 0.6667Poles 4Speed 1800of Bearings 2Type FormType IP22Connection STARNumber of Leads 6Wires Per Lead 6SAE Mounting Flywheel No. 521Housing No. "00"***********************************	PM	4160	1640		60	0.80	825	
SR4B0.6667418002FormIP22Mumber of LeadsWires of LeadsSAE Mounting Flywheel No.Housing No. *00"***********************************		-		1. S.				Enclosure
Number       Wires       SAE Mounting         Onnection       of Leads       Per Lead       Flywheel No.       Housing No.         STAR       6       1       521       "00"         ***********************************								
Connection STAR       of Leads 6       Per Lead 1       Flywheel No. 521       Housing No. "00"         ************************************	UI(4D	0.0007	4	1000		2	Form	IP22
STAR       6       1       521       100 mm rows         The final field of the fi	Comment							
Generator Efficiency at 0.80 Power Factor Per NEMA and IEC at 115 ° CLoadEfficiency (%) 0.000.00.000.00.00.25410.094.30.50820.096.40.751230.096.81.001640.096.81.252050.096.6***********************************							•	
Generator Efficiency at 0.80 Power Factor         Per NEMA and IEC at 115 ° C         Load       Efficiency (%)         0.00       0.0       0.0         0.25       410.0       94.3         0.50       820.0       96.4         0.75       1230.0       96.8         1.00       1640.0       96.8         1.25       2050.0       96.6         *************         Generator Resistances and Reactances         ***********         Resistances at 25 ° C       Generator Impedance       Short Circuit         Stator (Ohms)       Field (Ohms)       Base Ohms       Ratio         0.0545       1.01524       8.4418       0.3926         Eectances         Subtransient - Direct Axis       X"D       0.1577       1.3309         Subtransient - Direct Axis       X"D       0.1527       1.216         Transient - Saturated       X"D       0.2030       1.8595         Synchronous - Direct Axis       XD       3.1036 <td>OTAR</td> <td></td> <td>0</td> <td>30</td> <td></td> <td>521</td> <td></td> <td>-00-</td>	OTAR		0	30		521		-00-
Load       Fer Unit       Kilowatts       Efficiency (%)         0.00       0.0       0.0         0.25       410.0       94.3         0.50       820.0       96.4         0.75       1230.0       96.8         1.00       1640.0       96.8         1.25       2050.0       96.6         ************         Resistances at 25 ° C       Generator Impedance       Short Circuit         Stator (Ohms)       Field (Ohms)       Base Ohms       Ratio       0.3926         Subtransient - Direct Axis       X''D       0.1577       1.3309         Subtransient - Quadrature Axis       X''D       0.1577       1.3309         Subtransient - Quadrature Axis       X''D       0.2203       1.8595         Synchronous - Direct Axis       XD       3.1036       26.1994         Synchronous - Quadrature Axis       XD       3.1036       26.1994	********					r Factor		******
Per Unit         Kilowatts         Efficiency (%)           0.00         0.0         0.0           0.25         410.0         94.3           0.50         820.0         96.4           0.75         1230.0         96.8           1.00         1640.0         96.8           1.25         2050.0         96.6           **********           Generator Resistances and Reactances         ********           Resistances at 25 ° C         Generator Impedance         Short Circuit           Stator (Ohms)         Field (Ohms)         Base Ohms         Ratio           0.0545         1.01524         8.4418         0.3926           Subtransient - Direct Axis         X''D         0.1577         1.3309           Subtransient - Quadrature Axis         X''D         0.1577         1.3309           Subtransient - Quadrature Axis         X''D         0.2203         1.8595           Synchronous - Direct Axis         XD         3.1036         26.1994           Synchronous - Quadrature Axis         XD         3.1036         26.1994		]	Per NEMA	and IEC at	115 ° C	1		
0.00       0.0       0.00       0.0         0.25       410.0       94.3         0.50       820.0       96.4         0.75       1230.0       96.8         1.00       1640.0       96.8         1.25       2050.0       96.6         ***********************************			Load					
0.25       410.0       94.3         0.50       820.0       96.4         0.75       1230.0       96.8         1.00       1640.0       96.8         1.25       2050.0       96.6         *********         Resistances at 25 ° C       Generator Impedance       Short Circuit         Kesistances at 25 ° C       Generator Impedance       Short Circuit       Ratio         0.0545       1.01524       8.4418       0.3926         C       Per Unit       Ohms         Subtransient - Direct Axis       X''D       0.1577       1.3309         Subtransient - Quadrature Axis       X''Q       0.1329       1.1216         Transient - Saturated       X'D       0.2203       1.8595         Synchronous - Direct Axis       XD       3.1036       26.1994         Synchronous - Quadrature Axis       XQ       1.4587       12.3138			Per Unit	Kilowatts		Efficien	cy (%)	
0.50         820.0         96.4           0.75         1230.0         96.8           1.00         1640.0         96.8           1.25         2050.0         96.6           ***********************************			0.00	0.0		0.0		
0.75       1230.0       96.8         1.00       1640.0       96.8         1.25       2050.0       96.6         ***********************************				410.0		94.3		
1.001640.096.81.252050.096.6***********************************			0.50			96.4		
1.252050.096.6***********************************						96.8		
************************************						96.8		
Generator Resistances and ReactancesResistances at 25 ° CGenerator ImpedanceShort CircuitStator (Ohms)Field (Ohms)Base OhmsRatio0.05451.015248.44180.3926ReactancesPer UnitOhmsSubtransient - Direct AxisX''D0.15771.3309Subtransient - Quadrature AxisX''Q0.13291.1216Transient - SaturatedX'D0.22031.8595Synchronous - Direct AxisXD3.103626.1994Synchronous - Quadrature AxisXQ1.458712.3138			1.25	2050.0		96.6		
Stator (Ohms)Field (Ohms)Base OhmsRatio0.05451.015248.44180.3926ReactancesPer UnitOhmsSubtransient - Direct AxisX''D0.15771.3309Subtransient - Quadrature AxisX''Q0.13291.1216Transient - SaturatedX'D0.22031.8595Synchronous - Direct AxisXD3.103626.1994Synchronous - Quadrature AxisXQ1.458712.3138	*******	0	Generator 1	Resistances	and React	ances		*****
0.05451.015248.44180.3926ReactancesSubtransient - Direct AxisX''D0.15771.3309Subtransient - Quadrature AxisX''Q0.13291.1216Transient - SaturatedX'D0.22031.8595Synchronous - Direct AxisXD3.103626.1994Synchronous - Quadrature AxisXQ1.458712.3138	Resis	tances at 2	25 ° C	Generat	tor Impedar	ice	Short Circuit	
ReactancesPer UnitOhmsSubtransient - Direct AxisX''D0.15771.3309Subtransient - Quadrature AxisX''Q0.13291.1216Transient - SaturatedX'D0.22031.8595Synchronous - Direct AxisXD3.103626.1994Synchronous - Quadrature AxisXQ1.458712.3138	Stator (Ohms)	F	ield (Ohms)	В	ase Ohms		Ratio	
Per Unit         Ohms           Subtransient - Direct Axis         X''D         0.1577         1.3309           Subtransient - Quadrature Axis         X''Q         0.1329         1.1216           Transient - Saturated         X'D         0.2203         1.8595           Synchronous - Direct Axis         XD         3.1036         26.1994           Synchronous - Quadrature Axis         XQ         1.4587         12.3138	0.0545		1.01524		8.4418	64.	0.3926	
Subtransient - Direct Axis       X''D       0.1577       1.3309         Subtransient - Quadrature Axis       X''Q       0.1329       1.1216         Transient - Saturated       X'D       0.2203       1.8595         Synchronous - Direct Axis       XD       3.1036       26.1994         Synchronous - Quadrature Axis       XQ       1.4587       12.3138				Reactance	5			
Subtransient - Quadrature Axis       X''Q       0.1329       1.1216         Transient - Saturated       X'D       0.2203       1.8595         Synchronous - Direct Axis       XD       3.1036       26.1994         Synchronous - Quadrature Axis       XQ       1.4587       12.3138						Per Unit	Ohms	
Transient - Saturated         X'D         0.2203         1.8595           Synchronous - Direct Axis         XD         3.1036         26.1994           Synchronous - Quadrature Axis         XQ         1.4587         12.3138					X''D	0.1577	1.3309	
Synchronous - Direct AxisXD3.103626.1994Synchronous - Quadrature AxisXQ1.458712.3138			ire Axis		X''Q	0.1329	1.1216	
Synchronous - Quadrature Axis XQ 1.4587 12.3138	1000 C		11 <b>1</b> 9 1 1				1.8595	
	and the stand of the state of the second second							
			ure Axis					
7	Negative Sequ				X2	0.1453	1.2262	
Zero Sequence X0 0.0032 0.0270	Zero Sequenc	е			X0	0.0032	0.0270	

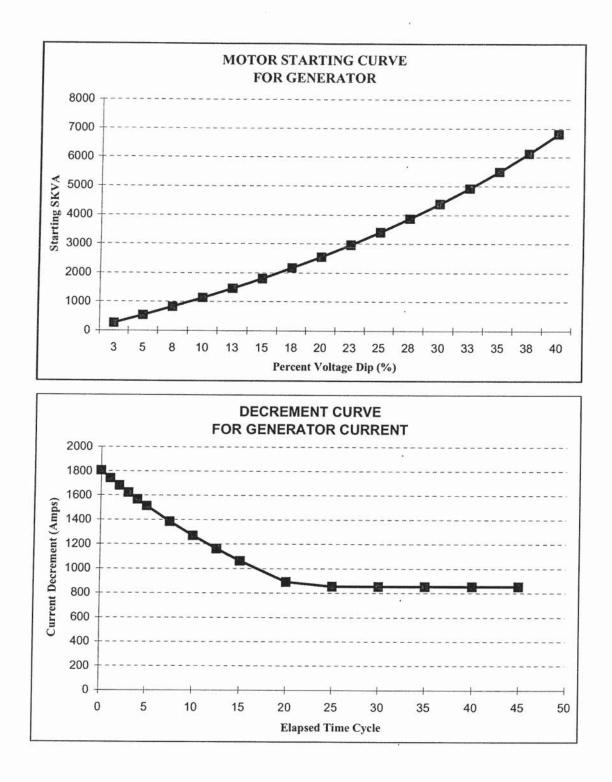
****		Generator 7	Гime Coı	istants		******
Open Circuit Tran	sient - Direct Ax				T'DO	Seconds 6.66483
Short Circuit Trans					T'D	0.47303
Open Circuit Subt	ransient - Direct	Axis			T''DO	0.01576
Short Circuit Subtr					T''D	0.00203
Open Circuit Subtr					T''QO	0.01069
Short Circuit Subtr	ansient - Quadr	ature Axis			T''Q	0.00004
Armature Short Ci	rcuit			<b>1</b> 1	ТА	0.04433
*****		Excitation				*****
			No Load	0.8 PF		
	<b>Excitation</b> V	oltage	8	29		
	<b>Excitation</b> C	Ų	1.5	5.5		
****		Ratings				********
**						
	-Line Voltage			) Volt		
	-Neutral Voltag	e		2 Volt		
KVA F	Ŭ.	<b>DI</b>	1000000	) kVA		
Rated	RMS Current (3	Phase)	285	5 Amps		
*****	Voltage Re	gulation and	Accurac	у		******
Voltage Level Adjus	stment	Constant Spee	d	With 3 Perc	ent Speed C	hange
+/- 5 percent of rate	ed	+/- 1 percent		+/- 2 percer	nt	
Waveform Deviation Less T	Line-to-Line N	o Load		Telephone I	nfluence Fac Less Than	
					Loos man	00
****	Mechar	ical Informa	tion			*****
		Center of Gra	avity			
Dimen		Dimension	ηY	Dimens	sion Z	
-1054.	1 mm	0.0 mr	n	0.0	mm	
Generat	tor Weight	Rotor Weig	ht	Stator W	eight	
	6 kg	1775 kg	201 ⁻² 1	3101	U	
Rotor Bala	ince			Overspeed C	anacity	
0.025 mm De			150 Pe	ercent of Syn		peed
Peak-to-P						
	999 999 NAS					

**Generator Cooling Requirements** 

**********

Heat Dissipated 54.40 KW

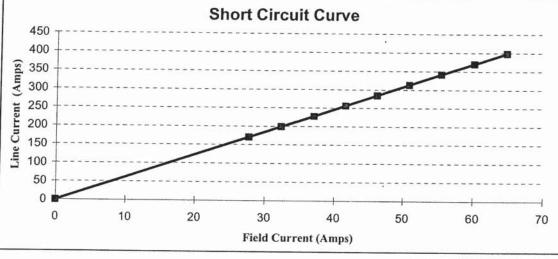
******


Airflow Required 231.04 cu m/min

#### 

		Insulation	Insulation Res.
Stator Rise (°C)	Rotor Rise (°C)	Class (°C)	as Shipped
80	80	155	100.0 Megaohms
			min at 40°C


Generator Motor Starting Capability		Generator Current Decrement Data Base Voltage = 4160			
		Elapsed	Decrement		
Percent	Across the Line	Time	Current		
Voltage Dip	Starting SKVA	(Cycles)	(Amps)		
2.5	262	0.0	1805		
5.0	537	1.0	1742		
7.5	827	2.0	1682		
10.0	1134	3.0	1624		
12.5	1458	4.0	1567		
15.0	1801	5.0	1513		
17.5	2165	.7.5	1386		
20.0	2551	10.0	1269		
22.5	2962	12.5	1162		
25.0	3401	15.0	1064		
27.5	3871	20.0	892		
30.0	4373	25.0	854		
32.5	4913	30.0	854		
35.0	5495	35.0	854		
37.5	6122	40.0	854		
40.0	6803	45.0	854		


Instantaneous three phase symmetrical fault current:	1805 (Amps)
Instantaneous line to neutral symmetrical fault current:	2788 (Amps)
Instantaneous line to line symmetrical fault current:	1625 (Amps)



13 A)

<b>Open Circuit Curve</b>		Short Circuit Curve			
Field Current	Voltage	Field Current	Line Current		
(Amps)	(Volts)	(Amps)	(Amps)		
0.0	0	0.0	0		
9.3	2496	27.7	171		
11.0	2912	32.3	199		
12.7	3328	37.0	228		
14.9	3744	41.6	256		
18.1	4160	46.2	285		
23.7	4576	50.8	313		
34.4	4992	55.4	341		
57.0	5408	60.1	370		
107.0	5824	64.7	398		





<b>by Schneider</b> Electric SQUARE D ENGINEERING SERVICE	S	DEVICE SETTING TABLE RELAYS			McMURDO STATION ANTARTICA REFER TO DWG ML - 04-255
BUS NUMBER & NAME	DEVICE NUMBER & NAME DEVICE TYPE	MANUFACTURER DESCRIPTION	BUS VOLTS DEV. VOLTS	CT RATIO	SETTINGS
001 WATER PLNT	001-1 Electronic	MULTILIN SR735/737 Feeder Relay 5A CT Sec	4160V	1200 / 5	Phase Pickup(Lo) 50 % (600A) VERY INV 1 INST 4.0 (4800A)
001 WATER PLNT	001-1_GF Electronic	MULTILIN SR735/737 Feeder Relay GF, 5A CT Sec	4160V	1200 / 5	Ground Pickup(Lo) 25 % (300A) MOD INV 1 INST 2.0 (2400A)
001 WATER PLNT	001-2 Electronic	MULTILIN SR735/737 Feeder Relay 5A CT Sec	4160V	1200 / 5	Phase Pickup(Lo) 30 % (360A) VERY INV 5 INST 4.0 (4800A)
001 WATER PLNT	001-2_GF Electronic	MULTILIN SR735/737 Feeder Relay GF, 5A CT Sec	4160V	1200 / 5	Ground Pickup(Lo) 15 % (180A) VERY INV 2 INST 2.0 (2400A)
001 WATER PLNT	001-3 Electronic	MULTILIN SR735/737 Feeder Relay 5A CT Sec	4160V	1200 / 5	Phase Pickup(Lo) 20 % (240A) VERY INV 3 INST 4.0 (4800A)
001 WATER PLNT	001-3_GF Electronic	MULTILIN SR735/737 Feeder Relay GF, 5A CT Sec	4160V	1200 / 5	Ground Pickup(Lo) 15 % (180A) VERY INV 2 INST 2.0 (2400A)

П

SQUARE D

# McMURDO STATION ANTARTICA

ANTARTICA REFER TO DWG ML - 04-255		DEVICE SETTING TABLE RELAYS			by Schneider Electric SQUARE D ENGINEERING SERVICES	
SETTINGS	CT RATIO	BUS VOLTS DEV. VOLTS	MANUFACTURER DESCRIPTION	DEVICE NUMBER & NAME DEVICE TYPE	BUS NUMBER & NAME	
Phase Pickup(Lo) 30 % (360A) VERY INV 2 INST 4.0 (4800A)	1200 / 5	4160V	MULTILIN SR735/737 Feeder Relay 5A CT Sec	001-4 Electronic	001 WATER PLNT	
Ground Pickup(Lo) 15 % (180A) VERY INV 2 INST 2.0 (2400A)	1200 / 5	4160V	MULTILIN SR735/737 Feeder Relay GF, 5A CT Sec	001-4_GF Electronic	001 WATER PLNT	
Phase Pickup(Lo) 30 % (360A) VERY INV 2 INST 4.0 (4800A)	1200 / 5	4160V	MULTILIN SR735/737 Feeder Relay 5A CT Sec	001-5 Electronic	001 WATER PLNT	
Ground Pickup(Lo) 15 % (180A) VERY INV 2 INST 2.0 (2400A)	1200 / 5	4160V	MULTILIN SR735/737 Feeder Relay GF, 5A CT Sec	001-5_GF Electronic	001 WATER PLNT	
Phase Pickup(Lo) 20 % (240A) VERY INV 3 INST 4.0 (4800A)	1200 / 5	4160V	MULTILIN SR735/737 Feeder Relay 5A CT Sec	001-6 Electronic	001 WATER PLNT	
Ground Pickup(Lo) 30 % (360A) VERY INV 2 INST 2.0 (2400A)	1200 / 5	4160V	MULTILIN SR735/737 Feeder Relay GF, 5A CT Sec	001-6_GF Electronic	001 WATER PLNT	

## by Schnoldon Steamle

## DEVICE SETTINC TABLE

### McMURDO STATION ANTARTICA

<b>by Schneider</b> Electric SQUARE D ENGINEERING SERVICE	8	DEVICE SETTING TABLE RELAYS			McMURDO STATION ANTARTICA REFER TO DWG ML - 04-255
BUS NUMBER & NAME	DEVICE NUMBER & NAME DEVICE TYPE	MANUFACTURER DESCRIPTION	BUS VOLTS DEV. VOLTS	CT RATIO	SETTINGS
001 WATER PLNT	001-7 Electronic	MULTILIN SR735/737 Feeder Relay 5A CT Sec	4160V	1200 / 5	Phase Pickup(Lo) 20 % (240A) VERY INV 3 INST 4.0 (4800A)
001 WATER PLNT	001-7_GF Electronic	MULTILIN SR735/737 Feeder Relay GF, 5A CT Sec	4160V	1200 / 5	Ground Pickup(Lo) 15 % (180A) VERY INV 2 INST 2.0 (2400A)
003 PWR PLNT-B	002 TIE Electronic	MULTILIN SR735/737 Feeder Relay 5A CT Sec	4160V	1200 / 5	Phase Pickup(Lo) 100 % (1200A) MOD INV 3
003 PWR PLNT-B	002 TIE_GF Electronic	MULTILIN SR735/737 Feeder Relay GF, 5A CT Sec	4160V	1200 / 5	Ground Pickup(Lo) 15 % (180A) VERY INV 2
002 PWR PLNT-A	002-1 Electronic	MULTILIN SR735/737 Feeder Relay 5A CT Sec	4160V	1200 / 5	Phase Pickup(Lo) 30 % (360A) VERY INV 5 INST 4.0 (4800A)
002 PWR PLNT-A	002-1_GF Electronic	MULTILIN SR735/737 Feeder Relay GF, 5A CT Sec	4160V	1200 / 5	Ground Pickup(Lo) 15 % (180A) VERY INV 2 INST 2.0 (2400A)

#### McMURDO STATION ANTADTIC

by Schneider Electric SQUARE D ENGINEERING SERVICES		DEVICE SETTING TABLE RELAYS			ANTARTICA REFER TO DWG ML - 04-255	
BUS NUMBER & NAME	DEVICE NUMBER & NAME DEVICE TYPE	MANUFACTURER DESCRIPTION	BUS VOLTS DEV. VOLTS	CT RATIO	SETTINGS	
002 PWR PLNT-A	002-2 Electronic	MULTILIN SR735/737 Feeder Relay 5A CT Sec	4160V	1200 / 5	Phase Pickup(Lo) 30 % (360A) VERY INV 5 INST 4.0 (4800A)	
002 PWR PLNT-A	002-2_GF Electronic	MULTILIN SR735/737 Feeder Relay GF, 5A CT Sec	4160V	1200 / 5	Ground Pickup(Lo) 15 % (180A) VERY INV 2 INST 2.0 (2400A)	
003 PWR PLNT-B	003-1 Electronic	MULTILIN SR735/737 Feeder Relay 5A CT Sec	4160V	1200 / 5	Phase Pickup(Lo) 30 % (360A) VERY INV 5 INST 4.0 (4800A)	
003 PWR PLNT-B	003-1_GF Electronic	MULTILIN SR735/737 Feeder Relay GF, 5A CT Sec	4160V	1200 / 5	Ground Pickup(Lo) 15 % (180A) VERY INV 2 INST 2.0 (2400A)	
003 PWR PLNT-B	003-2 Electronic	MULTILIN SR735/737 Feeder Relay 5A CT Sec	4160V	1200 / 5	Phase Pickup(Lo) 30 % (360A) VERY INV 2 INST 4.0 (4800A)	
003 PWR PLNT-B	003-2_GF Electronic	MULTILIN SR735/737 Feeder Relay GF, 5A CT Sec	4160V	1200 / 5	Ground Pickup(Lo) 15 % (180A) VERY INV 2 INST 2.0 (2400A)	

## by Schnoldon Steamle

SQUARE D

П

## DEVICE SETTING TABLE

## McMURDO STATION ANTARTICA

<b>by Schneider</b> Electric SQUARE D ENGINEERING SERVICES		DEVICE SETTING TABLE RELAYS			ANTARTICA REFER TO DWG ML - 04-255	
BUS NUMBER & NAME	DEVICE NUMBER & NAME DEVICE TYPE	MANUFACTURER DESCRIPTION	BUS VOLTS DEV. VOLTS	CT RATIO	SETTINGS	
003 PWR PLNT-B	003-3 Electronic	MULTILIN SR735/737 Feeder Relay 5A CT Sec	4160V	1200 / 5	Phase Pickup(Lo) 20 % (240A) VERY INV 3 INST 4.0 (4800A)	
003 PWR PLNT-B	003-3_GF Electronic	MULTILIN SR735/737 Feeder Relay GF, 5A CT Sec	4160V	1200 / 5	Ground Pickup(Lo) 15 % (180A) VERY INV 2 INST 2.0 (2400A)	
003 PWR PLNT-B	003-4 Electronic	MULTILIN SR735/737 Feeder Relay 5A CT Sec	4160V	1200 / 5	Phase Pickup(Lo) 50 % (600A) VERY INV 1 INST 4.0 (4800A)	
003 PWR PLNT-B	003-4_GF Electronic	MULTILIN SR735/737 Feeder Relay GF, 5A CT Sec	4160V	1200 / 5	Ground Pickup(Lo) 30 % (360A) VERY INV 2 INST 2.0 (2400A)	

П SQUARE D

#### he Schnoldon Stears

#### McMURDO STATION



#### **Technical Calculations**

E002-Electrical

**Calculation Title:** McMurdo Station Antarctica Power Load Flow Analysis

> Prepared For: NSF/ASC

#### Prepared By: Merrick & Company 5970 Greenwood Plaza Blvd. Greenwood Village, Co 80111-4703





Subject:	McMurdo Statio	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0			

### TABLE OF CONTENTS

TABLE OF CONTENTS	1
SECTION 1 EXECUTIVE SUMMARY	2
SECTION 2 INTRODUCTION	4
SECTION 3 GENERAL CRITERIA	5
SECTION 4 DESIGN INPUT	7
SECTION 5 METHODOLOGY	8
SECTION 6 REFERENCES	9
SECTION 7 CONCLUSIONS	10
SECTION 8 CALCULATIONS	11



Subject:	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

#### SECTION 1 EXECUTIVE SUMMARY

McMurdo will experience multiple load fluctuations during construction as new buildings are completed and others demolished. Existing conditions include multiple low energy efficient buildings scheduled for replacement with larger and high-energy efficient facilities. As a result, final buildout will consume less energy once new construction is completed and old building removed. There is one phased construction scenario where the demand load will that will add burden to the distribution system that represents the system's worst-case system loading scenario.

Building-2 (Building services) will be the first building to be constructed. Construction of Building 2 will demo low energy buildings that exist within its construction footprint. The worst-case scenario will occur when Building-2 is constructed and commissioned. Onsite and construction support staff will be at its peak along with added energy to operate and maintain Building 2 during commissioning.

Feeder B and D will be removed from Building-2's footprint. The design package does not include construction phasing details as buildings are constructed and others removed; however, this calculation has consider the worst-case scenario where part of Feeder B will remain to support Building 155, B142, B182. Feeder B will required a back-feed to support existing buildings that are to remain during Building 2 construction. Merrick's recommendation is to install a temporary back-feed from a new 5kV J-Box installed adjacent to transformer XFE-C (Crary Building) to Pole B15. Building 155 is a high-energy use facility and will contribute to a peak demand prior to its relocation to Building 2. The decommissioning of Building 155 and its support functions will reduce the Peak KW demand once Building 2 is completed.

The design package has provided improved feeder loop capability over the existing radial 5kV distribution. The new feeder configuration provided loop capability between Feeder A and C, Feeder D and E, and Feeder A and D.

Calculation results indicated that all design feeders are within design capacity and service voltage. Merrick site investigation revealed system modifications not reflected in the asbuilt drawings. The power flow analysis included all findings unidentified during the site investigation. Building 166, B188, and B167 original overhead feeder was removed due to



Subject:	McMurdo Statio	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0			

low clearance issues and their power source was relocated from Feeder B to Feeder D. A new 650-ft, #4, 600V cable was installed between pole D-35 and an existing pole located adjacent of B166. Secondary feeders to these buildings are excessive and subject to low service voltage. Low voltage conditions will occur when building occupancy increases during construction causing mechanical system failures. Building fault currents are too low and branch breakers are subject to long time trip delays. Failure to trip a breaker during a fault condition could lead to a building fire if not corrected. Corrective action is required for these facilities.



Subject:	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

#### **SECTION 2 INTRODUCTION**

#### CODES, STANDARDS, REFERENCES:

UFC 3-501-01 (6 Oct 2015) Electrical Engineering

- UFC 3-550-01 UFC 3-550-01 Exterior Electrical Power Distribution (1 September, 2-16)
- NFPA 70E Standard for Electrical Safety in the Work Place
- NFPA 70 National Electrical Code 2014
- IEEE Std 399 Recommended Practices for Industrial and Commercial Power System Analysis.

Merrick conducted a load flow analysis for McMurdo based on building square footage, UFC 3-550-01 load flow analysis guidelines, and site visit of each building. A detail EasyPower[™] model was developed reflecting existing conditions for each feeder and connected building/load. New building construction was incorporated into the model where multiple calculation were performed to analysis the performance of the overall system and identify the worst-case scenario. Building-2 (Building Services) will be the first building to be constructed. Construction of Building 2 will demo low energy buildings that exist within its construction footprint. The worst-case scenario will occur when Building-2 is constructed and commissioned while Building 155 remains in operation. The decommissioning of Building 155 and its support functions will reduce the Peak KW demand once Building 2 is completed. Power demand will continue to reduce as future buildings are construction and others removed.

Load Flow analysis performed by this calculation consist of feeder loading within McMurdo Station. System stability studies are outside of this scope but should be addressed when the overall site power demand drops lower than existing conditions. There will be several AIMS phased construction that will eventually drop the demand lower than existing conditions. A stability study should be conducted prior to reducing the overall demand load below the existing condition and/or the introduction of microturbines to McMurdo.



Subject:	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

#### **SECTION 3 GENERAL CRITERIA**

The existing site will remain in operation during all AIMS phased construction. The modeling will be performed based on the following assumption:

- 1. Construction of Building 2 and partial removal of Feeder B will create the worst-case system loading.
- 2. Existing overhead feeders scheduled to remain will be modeled for system power flow and voltage drop.
- 3. Scott Base and Wind Turbines will not be considered as power generation into the system model. The study will focus on McMurdo feeder loading where the power source selection will have no impact to worst-case scenario. Only power generated from the power plant will be considered as part of the analysis.
- 4. Feeder selection and sizing is based on existing conditions in order to minimize cost. Conductor capacity will be evaluated based on feeder system loading, tie-breaker operation, and voltage drop to each primary service point. Modification will be made as required to support new construction and existing building to remain.
- 5. Existing building secondary conductors will be evaluated based on existing installed configuration. Any voltage violations identified by the results will be discussed but not resolved as part of the study and design.
- Modification to existing overhead system will not be addressed as part of this design. Existing overhead pole jumpers are unreliable for long-term reliability due to high winds, vibrations, and mechanical failure due to cold climate application.
- 7. Excessive lengths on selected secondary distribution conductors provide limited power capacity within the service voltage criteria. Selected existing buildings may be problematic during construction with high occupancy causing mechanical equipment failure related to low voltage conditions. Design resolution to these building will not be provided in this design package.
- 8. McMurdo power plant is operating voltage at nominal voltage of 4.16kV.
- 9. Merrick was informed by McMurdo Site utilities that existing transformers do not have load tap changers. Therefore, load flow analysis will not be performed with adjusted tap settings on transformers for service voltage adjustment.



Subject:	McMurdo Statio	McMurdo Station Load Flow Study					
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

- 10. Transformer impedance data is not available. All calculations will be based on an assumed 5% impedance on transformers.
- 11. Previous McMurdo power system stability studies were conducted to maintain system stability based on existing power generation between McMurdo power plant, wind turbines, and Scott Base. The power flow analysis performed by this study will assume that no additional stability studies are required until the kW base loading drops below existing condition and there is no introduction of microturbines.
- 12. EasyPower[™] model generated by this study will be used for further system dynamic and stability studies as the system realizes a reduction of base loading and introduction of new power generation technology.



Subject:	McMurdo Station Load Flow Study					
Project No.:	6401748177	Calculation No.:	E002	Rev:	0	

#### **SECTION 4 DESIGN INPUT**

- 1. Existing feeder conductors sizes, distances, and configuration provided by as-built drawings and field verification results gathered during Merrick's 2017 McMurdo deployment.
- 2. Existing transformers sizes and rated nominal voltage rating.
- 3. Individual transformer impedances are not available; therefore, an assumed input of 5% impedance.
- 4. Generation equipment will be modeled based on on-site data collection and data provided by the owner.
- 5. Individual kW demand data is not available for each building. Peak demand will be based on onsite survey of each building, building square footage, UFC standards, and available onsite power flow data.
- 6. Individual Generator impedance data will be incorporated into the model with an adjusted KW rating due to fuel source.
- 7. EasyPower[™] Set points:
  - a. Bus under voltage=0.95pu
  - b. Bus over voltage= 1.05pu
  - c. Overload Threshold= -10% of rating



Subject:	McMurdo Station Load Flow Study					
Project No.:	6401748177	Calculation No.:	E002	Rev:	0	

#### SECTION 5 METHODOLOGY

An EasyPower[™] electrical model for McMurdo Station will be developed that includes all system components of the existing 5kV distribution system. AIMS construction phasing will impose system load fluctuations as system loads are added or removed. The model will be created where future system modification can be analyzed and evaluate the performance of the system as construction progresses. The model will be available for further dynamic and stability analysis outside of this scope when system base loading drops below existing conditions or new power generation technology is introduced. This calculation will model the anticipated system loading worst-case scenario to calculate equipment loading and system losses. Loop feed breakers will be operated and system loading will be analyzed to overall system performance evaluation.



Subject:	McMurdo Statio	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0			

## **SECTION 6 REFERENCES**

Refer to Section 2 Introduction.



Subject:	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

#### **SECTION 7 CONCLUSIONS**

All service feeders are operating within their designed capability both in normal and back-up operation. Service entrance voltage for each facility is within 5% of the McMurdo power plant operating voltage for the exception of B166, B167, and B188. The new primary distribution system will support McMurdo long-term requirements. System upgrades for existing overhead lines that are to remain will require future upgrades to resolve system reliability issues related with these systems.



Subject:	McMurdo Station Load Flow Study					
Project No.:	6401748177	Calculation No.:	E002	Rev:	0	

## **SECTION 8 CALCULATIONS**

## Power Flow Summary Report

Generator Summary Report

Ge	Generator Schedule			Scheduled	Limits			Solution							
Name	Туре	Rated kVA	kW	kvar	Vpu	kVAR Min	kVAR Max	kW	kvar	kVA	Pf	Vpu	Deg	Eq'pu	Deg
GEN-1	Sw	1750			1.000			0	0	0	0.000	1.000	0.00	1.000	0.00
GEN-2	Sw	1750			1.000			0	0	0	0.000	1.000	0.00	1.000	0.00
GEN-4	Sw	1500			1.000			707	310	772	0.916	1.000	0.00	1.037	3.89
GEN-5	Sw	1750			1.000			707	310	772	0.916	1.000	0.00	1.046	4.80
GEN-6	Sw	1750			1.000			707	310	772	0.916	1.000	0.00	1.046	4.80
RTF-1	Sw	240000			1.000			0	0	0	0.000	1.000	0.00	1.000	0.00
RTF-1-SB G1	Sw	240000			1.000			0	0	0	0.000	1.000	0.00	1.000	0.00
RTF-1-SB G2	Sw	240000			1.000			0	0	0	0.000	1.000	0.00	1.000	0.00
RTF-2	Sw	240000			1.000			0	0	0	0.000	1.000	0.00	1.000	0.00
RTF-3	Sw	240000			1.000			0	0	0	0.000	1.000	0.00	1.000	0.00
SCOTT BASE G1	Sw	225			1.000			-0	0	0	0.000	1.000	0.00	1.000	-0.00
SCOTT BASE G2	Sw	225			1.000			-0	0	0	0.000	1.000	0.00	1.000	-0.00
WTG-01	Sw	330			1.000			-0	0	0	0.000	1.000	0.00	1.000	-0.00



Subject:	McMurdo Station Load Flow Study								
Project No.:	6401748177	Calculation No.:	E002	Rev:	0				

Load Summary Report

Bus					Solution			
Name	Base kV	kV	Vpu	Deg	kW	kVar	kVA	Pf
A-31	4.160	4.139	0.995	0.04	0	0	0	0.000
A20-1	0.208	0.202	0.970	-0.21	0	0	0	0.000
A22	0.208	0.204	0.980	-0.22	0	0	0	0.000
A22-2	0.208	0.203	0.975	-0.20	0	0	0	0.000
A22-3	0.208	0.203	0.974	-0.20	0	0	0	0.000
A23	0.208	0.202	0.974	-0.20	0	0	0	0.000
B-3	0.480	0.478	0.996	-1.10	243	61	250	0.970
B-5	0.480	0.478	0.996	-1.09	146	36	150	0.970
B-15-SEC	0.208	0.206	0.991	-0.04	0	0	0	0.000
B-15-SEC_A	0.208	0.204	0.981	0.24	0	0	0	0.000
B-15-SEC_B	0.208	0.205	0.988	0.05	0	0	0	0.000
B-155	0.208	0.205	0.985	-1.01	190	62	200	0.950
B-167	0.208	0.189	0.910	1.02	5	2	5	0.950
B-182 COM	0.208	0.203	0.974	0.47	16	12	20	0.800
B-188	0.208	0.189	0.910	1.05	4	2	5	0.900
B-221	0.208	0.207	0.993	-0.03	5	2	5	0.950
B4-LOUNGE	0.208	0.207	0.993	-0.00	1	1	1	0.800
B4-THEATER	0.208	0.207	0.993	-0.00	1	1	1	0.800
B7	0.208	0.207	0.995	-0.07	1	1	1	0.800
B10	0.208	0.207	0.995	-0.08	1	1	1	0.800
B18	4.160	4.146	0.997	0.02	0	0	0	0.000
B68	0.208	0.206	0.991	-0.11	32	24	40	0.800
B72	0.208	0.203	0.974	-0.20	1	0	1	0.981
B73	0.208	0.206	0.993	-0.07	2	1	2	0.950
B132	0.208	0.202	0.973	-0.19	5	1	5	0.981
B136A	0.208	0.207	0.996	0.02	2	1	2	0.800
B136C	0.208	0.207	0.996	0.02	2	1	2	0.800
B141	0.208	0.202	0.970	-0.18	5	1	5	0.981
B150	0.208	0.206	0.990	0.04	16	12	20	0.800
B160	0.208	0.206	0.993	-0.07	2	1	2	0.950
B166	0.208	0.192	0.921	0.82	5	2	5	0.950
B168	0.208	0.202	0.970	-0.21	5	- 1	5	0.981
B174	0.208	0.206	0.991	-0.25	5	1	5	0.981
B175	0.208	0.205	0.985	-0.24	10	2	10	0.981
B182 VEH HTRS 1	0.208	0.204	0.980	0.28	8	6	10	0.800
B182 VEH HTRS 2	0.208	0.205	0.987	0.07	8	6	10	0.800
B185	0.208	0.206	0.991	-0.25	5	1	5	0.981
	5.200	0.200	0.001	0.20	5			0.001



Subject:	McMurdo Statio	McMurdo Station Load Flow Study								
Project No.:	6401748177	Calculation No.:	E002	Rev:	0					

Bu	s			Soluti	on			
Name	Base kV	kV	Vpu	Deg	kW	kVar	kVA	Pf
B191	0.208	0.206	0.991	-0.1	32	24	40	0.8
B192	0.208	0.204	0.98	-0.22	2	1	2	0.97
B341	0.208	0.206	0.991	-0.11	32	24	40	0.8
B344	0.208	0.205	0.988	-0.31	1	0	1	1
BLDG 10	0.48	0.477	0.993	-0.53	143	47	150	0.95
BUILDING 4	0.208	0.206	0.989	-0.04	32	24	40	0.8
BUS-1	4.16	4.159	1	0	0	0	0	0
BUS-2	4.16	4.158	0.999	-0.01	0	0	0	0
BUS-3	4.16	4.158	1	-0.01	0	0	0	0
BUS-4	4.16	4.158	1	-0.01	0	0	0	0
BUS-5	4.16	4.158	1	-0.01	0	0	0	0
BUS-6	4.16	4.158	1	-0.01	0	0	0	0
BUS-8	4.16	4.158	1	-0.01	0	0	0	0
BUS-9	0.208	0.189	0.91	1.02	0	0	0	0
BUS-9_C	4.16	4.159	1	0	0	0	0	0
BUS-15	4.16	4.138	0.995	0.05	0	0	0	0
BUS-27	4.16	4.137	0.995	0.05	0	0	0	0
CORE FREEZER PRI	4.16	4.152	0.998	-0.03	0	0	0	0
CORE FREEZER SEC	0.48	0.478	0.997	-0.16	38	12	40	0.95
D-17	4.16	4.14	0.995	0.04	0	0	0	0
D-17-1	4.16	4.14	0.995	0.04	0	0	0	0
D-17-1_A	4.16	4.137	0.994	0.05	0	0	0	0
D-29	4.16	4.137	0.995	0.05	0	0	0	0
D-30	4.16	4.137	0.994	0.05	0	0	0	0
D-31	4.16	4.137	0.994	0.05	0	0	0	0
D-33	4.16	4.137	0.994	0.05	0	0	0	0
D-34	4.16	4.137	0.994	0.05	0	0	0	0
D-35	4.16	4.137	0.994	0.05	0	0	0	0
D-38	4.16	4.149	0.997	0	0	0	0	0
D-40 SEC	0.208	0.202	0.97	-0.18	1	0	1	0.9
D-41	4.16	4.148	0.997	0.01	0	0	0	0
D-42	4.16	4.148	0.997	0.01	0	0	0	0
D-43	4.16	4.148	0.997	0.01	0	0	0	0
D-44	4.16	4.148	0.997	0.01	0	0	0	0
D10	4.16	4.144	0.996	0.02	0	0	0	0
D11	4.16	4.143	0.996	0.03	0	0	0	0
D12	4.16	4.142	0.996	0.03	0	0	0	0
D13	4.16	4.141	0.996	0.04	0	0	0	0
D14	4.16	4.141	0.995	0.04	0	0	0	0
D15	4.16	4.141	0.995	0.04	0	0	0	0



Subject:	McMurdo Statio	McMurdo Station Load Flow Study								
Project No.:	6401748177	Calculation No.:	E002	Rev:	0					

Bu	15			Soluti	on			
Name	Base kV	kV	Vpu	Deg	kW	kVar	kVA	Pf
D16	4.16	4.14	0.995	0.04	0	0	0	0
D17-2	4.16	4.14	0.995	0.04	0	0	0	0
D17-2_A	4.16	4.137	0.994	0.05	0	0	0	0
D18	4.16	4.141	0.995	0.04	0	0	0	0
D19	4.16	4.14	0.995	0.04	0	0	0	0
D20	4.16	4.139	0.995	0.04	0	0	0	0
D21	4.16	4.139	0.995	0.04	0	0	0	0
D22	4.16	4.138	0.995	0.05	0	0	0	0
D23	4.16	4.138	0.995	0.05	0	0	0	0
D24	4.16	4.138	0.995	0.05	0	0	0	0
D26	4.16	4.138	0.995	0.05	0	0	0	0
D28	4.16	4.137	0.995	0.05	0	0	0	0
D39 SEC	0.208	0.204	0.98	-0.21	0	0	0	0
D40 SEC	0.208	0.204	0.98	-0.21	1	0	1	0.9
GEN 1	4.16	4.16	1	0	0	0	0	0
GEN 2	4.16	4.16	1	0	0	0	0	0
GEN 5	4.16	4.16	1	0	0	0	0	0
GEN 6	4.16	4.16	1	0	0	0	0	0
GEN-4	4.16	4.16	1	0	0	0	0	0
HTA	0.48	0.477	0.993	-0.9	20	0	20	1
HTA_A	0.48	0.477	0.993	-0.9	20	0	20	1
HTA_B	0.48	0.477	0.993	-0.9	20	0	20	1
HTP-5	0.48	0.477	0.993	-0.9	3	0	3	1
HTP4	0.48	0.477	0.993	-0.9	10	0	10	1
HTP6	0.48	0.477	0.993	-0.9	0	0	0	0
JB	4.16	4.156	0.999	-0.01	0	0	0	0
JB-1A	4.16	4.157	0.999	-0.01	0	0	0	0
JB-3	4.16	4.146	0.997	0.02	0	0	0	0
JB-3A	4.16	4.158	0.999	-0.01	0	0	0	0
JB-4	4.16	4.146	0.997	0.02	0	0	0	0
JB-5	4.16	4.137	0.994	0.04	0	0	0	0
JB-6B	4.16	4.159	1	0	0	0	0	0
JB-36D	4.16	4.137	0.995	0.05	0	0	0	0
JB-A2	4.16	4.14	0.995	0.03	0	0	0	0
JB-C1	4.16	4.157	0.999	-0.01	0	0	0	0
JB-E1	4.16	4.152	0.998	-0.03	0	0	0	0
JB-TSPG	4.16	4.158	1	-0.01	0	0	0	0
JB-WP	4.16	4.159	1	0	0	0	0	0
KIWI	4.16	4.144	0.996	0.02	16	12	20	0.8
LDB HE COMPRESS	0.208	0.206	0.991	0	18	13	22	0.8



Subject:	McMurdo Station Load Flow Study							
Project No.:	6401748177	Calculation No.:	E002	Rev:	0			

Bu	s			Soluti	on			
Name	Base kV	kV	Vpu	Deg	kW	kVar	kVA	Pf
LOAD BANKS	0.48	0.48	1	0	0	0	0	0
P-35 SEC	0.208	0.207	0.993	-0.06	0	0	0	0
P-A2	4.16	4.158	0.999	-0.01	0	0	0	0
P-A3	4.16	4.155	0.999	0	0	0	0	0
P-A4	4.16	4.153	0.998	0	0	0	0	0
P-A5	4.16	4.151	0.998	0.01	0	0	0	0
P-A6	4.16	4.148	0.997	0.02	0	0	0	0
P-A7	4.16	4.147	0.997	0.02	0	0	0	0
P-A8	4.16	4.145	0.996	0.03	0	0	0	0
P-A9	4.16	4.145	0.996	0.03	0	0	0	0
P-A9_A	4.16	4.144	0.996	0.03	0	0	0	0
P-A10	4.16	4.144	0.996	0.03	0	0	0	0
P-A10 COMMON D	4.16	4.151	0.998	-0.01	0	0	0	0
P-A18	4.16	4.142	0.996	0.03	0	0	0	0
P-A19	4.16	4.141	0.995	0.04	0	0	0	0
P-A20	4.16	4.141	0.995	0.04	0	0	0	0
P-A20-1	0.208	0.206	0.989	-0.25	0	0	0	0
P-A21	4.16	4.141	0.995	0.04	0	0	0	0
P-A22	4.16	4.14	0.995	0.04	0	0	0	0
P-A22 - D COMMON	4.16	4.149	0.997	0	0	0	0	0
P-A22.	4.16	4.148	0.997	0.01	0	0	0	0
P-A23	4.16	4.14	0.995	0.04	0	0	0	0
P-A24	4.16	4.139	0.995	0.04	0	0	0	0
P-A25	4.16	4.139	0.995	0.04	0	0	0	0
P-A26	4.16	4.139	0.995	0.04	0	0	0	0
P-A26 LITE SOUTH	0.208	0.205	0.988	-0.34	0	0	0	1
P-A26 SEC	0.208	0.205	0.988	-0.34	3	0	3	1
P-A27	0.208	0.205	0.985	-0.35	3	0	3	1
P-A28	4.16	4.139	0.995	0.04	0	0	0	0
P-A29	4.16	4.139	0.995	0.04	0	0	0	0
P-A30	4.16	4.139	0.995	0.04	0	0	0	0
P-A30-SEC	0.208	0.206	0.991	-0.28	0	0	0	0
P-A31 (SEC)	0.208	0.206	0.991	-0.28	0	0	0	0
P-A31 SEC WEST	0.208	0.206	0.989	-0.31	0	0	0	0
P-A32	4.16	4.139	0.995	0.04	0	0	0	0
P-A33	4.16	4.139	0.995	0.04	0	0	0	0
P-B	4.16	4.157	0.999	-0.01	0	0	0	0
P-B1	0.208	0.207	0.996	-0.08	0	0	0	0
P-B2	4.16	4.157	0.999	-0.01	0	0	0	0
P-B3	4.16	4.155	0.999	0	0	0	0	0



Subject:	McMurdo Station Load Flow Study							
Project No.:	6401748177	Calculation No.:	E002	Rev:	0			

Bus				Soluti	on			
Name	Base kV	kV	Vpu	Deg	kW	kVar	kVA	Pf
P-B3-SEC	0.208	0.207	0.996	-0.08	0	0	0	
P-B4	4.16	4.154	0.999	0	0	0	0	
P-85	4.16	4.152	0.998	0	0	0	0	
P-B5-SEC	0.208	0.207	0.994	-0.02	0	0	0	
P-B6	4.16	4.151	0.998	0.01	0	0	0	
P-88	4.16	4.15	0.998	0.01	0	0	0	
P-89	4.16	4.149	0.997	0.01	0	0	0	
P-B10	4.16	4.147	0.997	0.02	0	0	0	
P-B11	4.16	4.147	0.997	0.02	0	0	0	
P-B12	4.16	4.147	0.997	0.02	0	0	0	
P-B13	4.16	4.147	0.997	0.02	0	0	0	
P-B14	4.16	4.147	0.997	0.02	0	0	0	
P-B15	4.16	4.147	0.997	0.02	0	0	0	
P-B16	4.16	4.147	0.997	0.02	0	0	0	
P-B17	4.16	4.146	0.997	0.02	0	0	0	
P-B20	4.16	4.147	0.997	0.02	0	0	0	
P-B82	0.208	0.207	0.995	-0.06	0	0	0	
P-B82_A	0.208	0.207	0.994	-0.05	1	1	1	0
P-C1	4.16	4.158	0.999	-0.01	0	0	0	
P-D9	4.16	4.145	0.996	0.02	0	0	0	
P-D33	4.16	4.147	0.997	0.01	0	0	0	
P-D36	4.16	4.137	0.995	0.05	0	0	0	
P-D37NC	4.16	4.146	0.997	0.01	0	0	0	
P-D39	4.16	4.149	0.997	0	0	0	0	
P-D40	4.16	4.148	0.997	0	0	0	0	
POLE - B166	0.208	0.192	0.924	0.78	0	0	0	
POLE 167	0.208	0.19	0.913	0.98	0	0	0	
POWER PLANT A	4.16	4.159	1	0	0	0	0	
POWER PLANT A_A	4.16	4.158	1	-0.01	0	0	0	
PUMP HOUSE PRI	4.16	4.157	0.999	-0.01	0	0	0	
PUMP HOUSE-SEC	0.48	0.475	0.99	-0.58	29	9	30	0.9
RWE POWERSTORE	4.16	4.137	0.995	0.05	0	0	0	
SCOTT BASE G1	0.4	0.4	1	0	0	0	0	
SCOTT BASE G2	0.4	0.4	1	0	0	0	0	
SW-1	4.16	4.158	1	-0.01	0	0	0	
SW-2	4.16	4.158	1	-0.01	0	0	0	
SW-3	4.16	4.158	1	-0.01	0	0	0	
SW-4	4.16	4.158	1	-0.01	0	0	0	
SW-5	4.16	4.159	1	0	0	0	0	
SW-6	4.16	4.159	1	0	0	0	0	



Subject:	McMurdo Statio	McMurdo Station Load Flow Study								
Project No.:	6401748177	Calculation No.:	E002	Rev:	0					

Bu	s			Soluti	on			
Name	Base kV	kV	Vpu	Deg	kW	kVar	kVA	Pf
SWA-01	4.16	4.141	0.995	0.03	0	0	0	0
SWC-01	4.16	4.158	0.999	-0.01	0	0	0	0
SWE-01	4.16	4.152	0.998	-0.03	0	0	0	0
T-L (XFE-A)	4.16	4.159	1	0	0	0	0	0
T-PH-1	4.16	4.159	1	0	0	0	0	0
T-PH-1 SEC	0.48	0.479	0.998	-0.18	67	33	75	0.9
T-W-1 SEC	0.208	0.207	0.998	-0.18	67	33	75	0.9
T-W-2 SEC	0.48	0.479	0.998	-0.18	67	33	75	0.9
T-W-2 SEC_A	0.208	0.207	0.998	-0.18	67	33	75	0.9
TW-1 PRI	4.16	4.159	1	0	0	0	0	0
TW-2 PRI	4.16	4.159	1	0	0	0	0	0
TW-2 PRI_A	4.16	4.159	1	0	0	0	0	0
USAP B70	0.208	0.207	0.994	0.03	1	0	1	0.95
VEOC	0.48	0.474	0.987	-0.72	143	47	150	0.95
WTG- SOURCE-1	0.4	0.4	1	0	0	0	0	0
WTG-1	0.4	0.4	1	0	0	0	0	0
WTG-1_C	0.4	0.4	1	0	0	0	0	0
WTG-2	0.4	0.4	1	0	0	0	0	0
XFA-4 PRI	4.16	4.153	0.998	0	0	0	0	0
XFA-4 SEC	0.48	0.477	0.993	-0.9	0	0	0	0
XFA-5-PRI	4.16	4.151	0.998	0.01	0	0	0	0
XFA-5-SEC	0.208	0.207	0.994	-0.17	40	30	50	0.8
XFA-6-PRI	4.16	4.148	0.997	0.02	0	0	0	0
XFA-6-SEC	0.208	0.207	0.997	0	3	2	4	0.8
XFA-9-A-SEC	0.208	0.207	0.994	-0.08	24	18	30	0.8
XFA-9-B-SEC	0.208	0.207	0.994	-0.08	24	18	30	0.8
XFA-9A-PRI	4.16	4.145	0.996	0.03	0	0	0	0
XFA-9B-PRI	4.16	4.144	0.996	0.03	0	0	0	0
XFA-10B-PRI	4.16	4.14	0.995	0.03	0	0	0	0
XFA-10B-SEC	0.208	0.207	0.994	-0.02	12	9	15	0.8
XFA-19-PRI	4.16	4.141	0.995	0.04	0	0	0	0
XFA-19-SEC	0.208	0.207	0.994	-0.12	0	0	0	0
XFA-25-A-SEC	0.208	0.207	0.994	0.01	8	6	10	0.8
XFA-25-PRI	4.16	4.139	0.995	0.04	0	0	0	0
XFA-25-SEC	0.208	0.206	0.991	-0.14	40	30	50	0.8
XFA-25A-PRI	4.16	4.139	0.995	0.04	0	0	0	0
XFA-32-PRI	4.16	4.139	0.995	0.04	0	0	0	0
XFA-32-SEC	0.208	0.206	0.992	-0.26	0	0	0	0
XFA-VEOC PRI	4.16	4.139	0.995	0.03	0	0	0	0
XFB-3-PRI	4.16	4.155	0.999	0	0	0	0	0



Subject:	McMurdo Station Load Flow Study								
Project No.:	6401748177	Calculation No.:	E002	Rev:	0				

Bu	IS			Soluti	ion			
Name	Base kV	kV	Vpu	Deg	kW	kVar	kVA	Pf
XFB-3-SEC	0.208	0.207	0.996	-0.08	0	0	0	0
XFB-11 SEC	0.208	0.207	0.995	-0.06	16	12	20	0.8
XFB-11-PRI	4.16	4.147	0.997	0.02	0	0	0	0
XFB-12 SEC	0.208	0.207	0.993	-0.13	16	12	20	0.8
XFB-12-PRI	4.16	4.147	0.997	0.02	0	0	0	0
XFB-15 SEC	0.208	0.207	0.994	-0.13	0	0	0	0
XFB-15-PRI	4.16	4.147	0.997	0.02	0	0	0	0
XFB-15A SEC	0.48	0.478	0.996	-0.01	3	2	4	0.8
XFB-15A-PRI	4.16	4.147	0.997	0.02	0	0	0	0
XFB-17 SEC	0.208	0.205	0.986	-0.96	0	0	0	0
XFB-17-PRI	4.16	4.145	0.996	0.02	0	0	0	0
XFB-20 SEC	0.208	0.207	0.997	0	0	0	0	0
XFB-20-PRI	4.16	4.147	0.997	0.02	0	0	0	0
XFC-8A PRI	4.16	4.156	0.999	-0.01	0	0	0	0
XFC-8B SEC	0.208	0.207	0.997	-0.12	24	18	30	0.8
XFC-8C PRI	4.16	4.156	0.999	-0.01	0	0	0	0
XFC-8C SEC	0.208	0.207	0.997	-0.12	24	18	30	0.8
XFC-B2B5 PRI	4.16	4.149	0.997	-0.03	0	0	0	0
XFC-B2B5-SEC	0.48	0.478	0.996	-1.07	0	0	0	0
XFD-17 PRI	4.16	4.14	0.995	0.04	0	0	0	0
XFD-17 PRI_B	4.16	4.141	0.995	0.04	0	0	0	0
XFD-17 SEC	0.208	0.206	0.992	-0.1	32	24	40	0.8
XFD-17-1 PRI	4.16	4.14	0.995	0.04	0	0	0	0
XFD-17-1 PRI_A	4.16	4.137	0.994	0.05	0	0	0	0
XFD-17-1 SEC	0.208	0.206	0.992	-0.1	0	0	0	0
XFD-18 PRI	4.16	4.141	0.995	0.04	0	0	0	0
XFD-18-SEC	0.208	0.206	0.992	-0.11	0	0	0	0
XFD-19 SEC	0.208	0.206	0.992	-0.11	0	0	0	0
XFD-25 PRI	4.16	4.138	0.995	0.05	0	0	0	0
XFD-25-SEC	0.208	0.206	0.992	-0.1	0	0	0	0
XFD-35 PRI	4.16	4.137	0.994	0.05	0	0	0	0
XFD-35 SEC	0.208	0.207	0.993	-0.05	0	0	0	0
XFD-36-D1	4.16	4.137	0.994	0.04	0	0	0	0
XFD-36-D2	4.16	4.137	0.994	0.04	0	0	0	0
XFD-36A SEC	0.208	0.207	0.993	-0.02	0	0	0	0
XFD-36A SEC_A	0.208	0.206	0.993	-0.03	0	0	0	0
XFD-42-B PRI	4.16	4.146	0.997	0.02	0	0	0	0
XFD-42A SEC	0.208	0.207	0.995	-0.06	16	12	20	0.8
XFD-42A SEC_A	0.208	0.207	0.995	-0.06	16	12	20	0.8
XFD-42A-PRI	4.16	4.146	0.997	0.02	0	0	0	0



Subject:	McMurdo Station Load Flow Study								
Project No.:	6401748177	Calculation No.:	E002	Rev:	0				

Bu	s			Soluti	ion			
Name	Base kV	kV	Vpu	Deg	kW	kVar	kVA	Pf
XFD-44	4.16	4.148	0.997	0.01	0	0	0	0
XFD-44-SEC	0.208	0.207	0.997	0	2	1	2	0.8
XFD-45-PRI	4.16	4.148	0.997	0.01	0	0	0	0
XFD-45-SEC	0.208	0.207	0.997	0	1	1	1	0.8
XFE-A PRI	4.16	4.151	0.998	-0.03	0	0	0	0
XFE-B PRI	4.16	4.152	0.998	-0.03	0	0	0	0
XFE-B SEC	0.208	0.206	0.992	-0.5	180	87	200	0.9
XFF-D-PRI	4.16	4.159	1	0	0	0	0	0
XFF-D-SEC	0.48	0.479	0.998	-0.18	67	33	75	0.9

### System Summary Report

Total	kW	kVAR	kVA	PF
Generation in System	2122	929	2317	0.916
Load in System	2108	931	2305	0.915
Shunt Load in System	0	0		
Losses in System	14	-2		
Check of Balance	0	0		

#### Voltage Violation Report

Limits (MAX: 1.05, Min: 0.95)

Bus Name	Base kV	Vpu	kV	
B-167	0.208	0.91	0.18	
B-188	0.208	0.91	0.18	
B166	0.208	0.921	0.19	
BUS-176	0.208	0.91	0.18	
POLE - B166	0.208	0.924	0.19	
POLE 167	0.208	0.913	0.1	



Subject:	McMurdo Station Load Flow Study								
Project No.:	6401748177	Calculation No.:	E002	Rev:	0				

**Transformer Tap Report** 

Transformer	Co	onnection	Base	kV	T	ap kV				LTC Desc	ription	n		
Name	From Bus Name	To Bus Name	From	То	From	То	Туре	LTC	LTC Type	Control Side	LTC Side	Control Value pu	Limits Min kV	Limits Max kV
T-PH-1	T-PH-1	T-PH-1 SEC	4.16	0.48	4.16	0.48	2Wnd	No						
T-W-2	TW-2 PRI	T-W-2 SEC	4.16	0.48	4.16	0.48	2Wnd	No						
TX-1	T-L (XFE-A)	LOAD BANKS	4.16	0.48	4.16	0.48	2Wnd	No						
TX-1_A	TW-1 PRI	T-W-1 SEC	4.16	0.208	4.16	0.208	2Wnd	No						
TX-2	XFD-36-D1	B-221	4.16	0.208	4.16	0.208	2Wnd	No						
TX-2_A	XFD-36-D2	USAP B70	4.16	0.208	4.16	0.208	2Wnd	No						
TX-3	PUMP HOUSE	PUMP HOUSE-SEC	4.16	0.48	4.16	0.48	2Wnd	No						
TX-4	XFA-VEOC PRI	VEOC	4.16	0.48	4.16	0.48	2Wnd	No						
XFA-4	XFA-4 PRI	XFA-4 SEC	4.16	0.48	4.16	0.48	2Wnd	No						
XFA-5	XFA-5-PRI	XFA-5-SEC	4.16	0.208	4.16	0.208	2Wnd	No						
XFA-6	XFA-6-PRI	XFA-6-SEC	4.16	0.208	4.16	0.208	2Wnd	No						
XFA-9-A	XFA-9A-PRI	XFA-9-A-SEC	4.16	0.208	4.16	0.208	2Wnd	No						
XFA-9-B	XFA-9B-PRI	XFA-9-B-SEC	4.16	0.208	4.16	0.208	2Wnd	No						
XFA-10B	XFA-10B-PRI	XFA-10B-SEC	4.16	0.208	4.16	0.208		No						
XFA-19	XFA-19-PRI	XFA-19-SEC	4.16	0.208	4.16	0.208		No						
XFA-25	XFA-25-PRI	XFA-25-SEC	4.16	0.208	4.16	0.208		No						
XFA-25A	XFA-25A-PRI	XFA-25-A-SEC	4.16	0.208	4.16	0.208		No						
XFA-32	XFA-32-PRI	XFA-32-SEC	4.16	0.208	4.16	0.208		No						
XFB-3	XFB-3-PRI	XFB-3-SEC	4.16	0.208	4.16	0.208		No						
XFB-11	XFB-11-PRI	XFB-11 SEC	4.16	0.208	4.16		2Wnd	No						<b>—</b>
XFB-11 XFB-12	XFB-12-PRI	XFB-12 SEC	4.16	0.208	4.16	0.208		No						
XFB-12	XFB-15-PRI	XFB-15 SEC	4.16	0.208	4.16	0.208		No						
XFB-15A	XFB-15A-PRI	XFB-15A SEC	4.16	0.208	4.16	0.208		No						
XFB-130	XFB-17-PRI	XFB-17 SEC	4.16	0.208	4.16	0.208		No						<b></b>
XFB-20	XFB-20-PRI	XFB-20 SEC	4.16	0.208	4.16	0.208		No						
XFC-8-C	XFC-8C PRI	XFC-8C SEC	4.16	0.208	4.16	0.208		No						
XFC-8B	XFC-8C PRI	XFC-88 SEC	4.16	0.208	4.16	0.208		No						
XFC-88	XFC-B2B5 PRI	XFC-B2B5-SEC	4.16	0.208	4.13	0.208		Yes	kV	То	From	1	0.1	1500
XFD-17	XFD-17 PRI	XFD-17 SEC	4.16	0.48	4.15	0.48		No	KV.	10	FIOM	1	0.1	1500
XFD-17 XFD-17-1	XFD-17-1 PRI	XFD-17-1 SEC	4.16	0.208	4.16	0.208		No						
XFD-17-1 XFD-18	XFD-17-1 PRI	XFD-17-1 SEC XFD-18-SEC	4.16	0.208	4.16	0.208		No						
XFD-18 XFD-19	XFD-18 PRI XFD-17 PRI B	XFD-18-SEC XFD-19 SEC	4.16	0.208	4.16	0.208		No						
XFD-19 XFD-25	XFD-17 PRI_B	XFD-19 SEC XFD-25-SEC	4.16	0.208	4.16	0.208		No						
XFD-25 XFD-35	XFD-25 PRI	XFD-25-SEC XFD-35 SEC	4.16	0.208	4.16	0.208		No						<b>—</b>
XFD-35 XFD-36-A	XFD-35 PRI XFD-17-	XFD-36 SEC XFD-36A SEC	4.16	0.208	4.16	0.208		No						
XFD-36-A XFD-36-B			4.16	0.208	4.16	0.208		No						
XFD-36-B XFD-42 A	D17-2_A XFD-42A-PRI	XFD-36A SEC_A XFD-42A SEC	4.16	0.208	4.16	0.208		No						
-														
XFD-42_B	XFD-42-B PRI	XFD-42A SEC_A	4.16	0.208	4.16	0.208		No						
XFD-44	XFD-44	XFD-44-SEC	4.16	0.208	4.16	0.208		No						
XFD-45	XFD-45-PRI	XFD-45-SEC	4.16	0.208	4.16	0.208		No						
XFE-A.	XFE-A PRI	BLDG 10	4.16	0.48	4.16	0.48		No						<u> </u>
XFE-B	XFE-B PRI	XFE-B SEC	4.16	0.208	4.16		2Wnd	No						
XFE-C.	CORE FREEZE	CORE FREEZER SEC	4.16	0.48	4.16	0.48		No						L
XFF-B	TW-2 PRI_A	T-W-2 SEC_A	4.16	0.208	4.16	0.208		No						
XFF-D	XFF-D-PRI	XFF-D-SEC	4.16	0.48	4.16	0.48	2Wnd	No						



Subject:	McMurdo Station Load Flow Study								
Project No.:	6401748177	Calculation No.:	E002	Rev:	0				

	l	line		Load					
From Bus Name	To Bus Name	Branch Name	Rated Amps	Load Amps	Loaded%	OverLoaded%	Comment		
A-31	P-A32	C-3_AG	190	2.4	1.30%	-98.70%			
A20-1	B168	C-4_K	115	14.6	12.70%	-87.30%			
A22	A22-2	C-4_D	170	49.4	29.10%	-70.90%			
A22	D39 SEC	C-4_AF	115	2.8	2.50%	-97.50%			
A22	B192	C-4_C	115	5.8	5.10%	-94.90%			
A22-2	A23	C-4_H	170	46.5	27.40%	-72.60%			
A22-2	A22-3	C-4_F	170	2.9	1.70%	-98.30%			
A22-3	B72	C-4_E	170	2.9	1.70%	-98.30%			
A23	B132	C-4_G	170	31.9	18.80%	-81.20%			
A23	A20-1	C-4_J	115	14.6	12.70%	-87.30%			
B-15-SEC	B-15-SEC_A	C-10_A	170	85.3	50.20%	-49.80%			
B-15-SEC	B-15-SEC_B	C-10_D	170	28.1	16.50%	-83.50%			
B-15-SEC_A	B182 VEH HT	C-10_C	170	28.3	16.70%	-83.30%			
B-15-SEC_A	B-182 COM	C-10_B	170	57	33.50%	-66.50%			
B-15-SEC_B	B182 VEH HT	C-10_E	170	28.1	16.50%	-83.50%			
B-167	BUS-9	C-37	25	0	0.00%	-100.00%			
B-167	POLE 167	C-1_CU	125	15.3	12.20%	-87.80%			
B-188	POLE 167	C-1_CV	125	15.2	12.20%	-87.80%			
B18	P-B17	C-1_CL	190	0	0.00%	-100.00%			
B73	P-35 SEC	C-1_CS	620	5.6	0.90%	-99.10%			
B132	B141	C-4_I	170	17.4	10.20%	-89.80%			
B141	D-40 SEC	C-4_AE	170	2.9	1.70%	-98.30%			
B150	XFD-36A SEC	C-1_CJ	130	56.1	43.20%	-56.80%			
B160	P-35 SEC	C-1_CR	620	5.6	0.90%	-99.10%			
B166	POLE - B166	C-1_CT	125	15.1	12.10%	-87.90%			
BUILDING 4	XFD-17-1 SEC	C-1_CC	130	112.3	86.40%	-13.60%			
BUS-1	SW-6	C-1_L	765	88.4	11.60%	-88.40%			
BUS-2	P-C1	C-20	255	68.1	26.70%	-73.30%			
BUS-2	SWC-01	C-19	255	68.1	26.70%	-73.30%			
BUS-3	BUS-4	C-1_A	765	0.1	0.00%	-100.00%			
BUS-4	BUS-5	C-1_B	765	0.1	0.00%	-100.00%			
BUS-5	BUS-6	C-1_C	765	0.1	0.00%	-100.00%			
BUS-6	JB-TSPG	C-1_D	765	0.1	0.00%	-100.00%			
BUS-8	JB-TSPG	C-1_E	765	0	0.00%	-100.00%			
BUS-27	D28	C-11_T	190	2.8	1.50%	-98.50%			
D-17	D-17-1	C-11_I	190	5.6	3.00%	-97.00%			
D-17-1	D17-2	C-11_J	190	0	0.00%	-100.00%			
D-17-1_A	D17-2_A	C-11_CK	400	3.1	0.80%	-99.20%			
D-29	D-30	C-11_V	190	2.8	1.50%	-98.50%			
D-30	D-31	C-11_W	190	2.8	1.50%	-98.50%			
D-31	D-33	C-11_X	190	2.8	1.50%	-98.50%			
D-33	D-34	C-11_Z	190	2.8	1.50%	-98.50%			
D-34	D-35	C-11_AA	190	2.8	1.50%	-98.50%			



Subject:	McMurdo Station Load Flow Study								
Project No.:	6401748177	Calculation No.:	E002	Rev:	0				

D-38	P-A22.	C-1_BR	190	36.5	19.20%	-80.80%
D-41	P-D40	C-1_C0	190	8.5	4.50%	-95.50%
D-42	D-41	C-1_BT	190	8.5	4.50%	-95.50%
D-43	D-42	C-1_BU	190	0.4	0.20%	-99.80%
D-44	XFD-44	C-3_AO	130	0.3	0.20%	-99.80%
D-44	D-43	C-1_BV	190	0.4	0.20%	-99.80%
D-44	XFD-45-PRI	C-3_AP	130	0.1	0.10%	-99.90%
D10	D11	C-11_A	190	36.5	19.20%	-80.80%
D11	D12	C-11_B	190	36.5	19.20%	-80.80%
D12	D13	C-11_C	190	11.2	5.90%	-94.10%
D12	D18	C-11_K	190	25.4	13.40%	-86.60%
D13	D14	C-11_D	190	11.2	5.90%	-94.10%
D14	D15	C-11_F	190	11.2	5.90%	-94.10%
D15	D16	C-11_G	190	11.2	5.90%	-94.10%
D16	D-17	С-11_Н	190	11.2	5.90%	-94.10%
D18	D19	C-11_L	190	14.3	7.50%	-92.50%
D19	D20	C-11_M	190	14.3	7.50%	-92.50%
D20	D21	C-11_N	190	14.3	7.50%	-92.50%
D21	D22	C-11_0	190	14.3	7.50%	-92.50%
D22	D23	C-11_P	190	14.3	7.50%	-92.50%
D23	D24	C-11_Q	190	5.6	2.90%	-97.10%
D23	D26	C-11_R	190	8.8	4.60%	-95.40%
D26	BUS-27	C-11_S	190	2.8	1.50%	-98.50%
D26	P-D36	C-11_AB	190	6	3.20%	-96.80%
D28	D-29	C-11_U	190	2.8	1.50%	-98.50%
D39 SEC	D40 SEC	C-4_AG	115	2.8	2.50%	-97.50%
JB	XFC-8A PRI	195	255	4.2	1.60%	-98.40%
JB	XFC-8C PRI	195_A	255	4.1	1.60%	-98.40%
JB-1A	SW-1	C-1_T	765	85.4	11.20%	-88.80%
JB-3	D-42	C-1_BW	190	5.6	2.90%	-97.10%
JB-3A	SW-3	C-1_AV	765	54.3	7.10%	-92.90%
JB-4	JB-3	C-1_BX	130	2.8	2.10%	-97.90%
JB-5	XFD-36-D1	C-33	280	0.7	0.20%	-99.80%
JB-5	XFD-36-D2	C-33_A	280	0.2	0.10%	-99.90%
JB-6B	SW-6	C-1_BB	765	31.3	4.10%	-95.90%
JB-36D	D-17-1_A	C-11_AF	400	5.9	1.50%	-98.50%
JB-A2	XFA-10B-PRI	C-3_AM	280	2.1	0.70%	-99.30%
JB-A2	XFA-VEOC PRI	C-27	165	21.1	12.80%	-87.20%
JB-C1	JB	C-5_C	255	8.2	3.20%	-96.80%
JB-E1	JB-3A	C-1_AW	255	54.4	21.30%	-78.70%
JB-E1	XFE-B PRI	C-1_CP	255	28	11.00%	-89.00%
JB-E1	SWE-01	C-1_CQ	255	26.5	10.40%	-89.60%
JB-WP	SW-6	C-1_AY	765	20.9	2.70%	-97.30%
KIWI	D-42	C-1_BZ	130	2.8	2.10%	-97.90%
LDB HE COMPRES	XFD-	C-1_CK	130	63	48.50%	-51.50%



Subject:	McMurdo Statio	on Load Flow Stu	ldy		
Project No.:	6401748177	Calculation No.:	E002	Rev:	0

P-35 SEC	POLE-B166	C-31	95	45.5	47.90%	-52.10%	
P-35 SEC	XFD-35 SEC	C-1_CH	620	56.7	9.10%	-90,90%	
P-A2	P-A3	C-3	152	62.6	41.20%	-58.80%	
P-A2	SW-2	C-1_N	255	62.6	24.50%	-75.50%	
P-A3	P-A4	C-3_A	190	62.6	32.90%	-67.10%	
P-A4	P-A5	C-3_C	190	53.2	28.00%	-72.00%	
P-A4	XFA-4 PRI	C-3_B	130	10.2	7.80%	-92.20%	
P-A5	P-A6	C-3_E	190	46.4	24.40%	-75.60%	
P-A5	XFA-5-PRI	C-3_D	130	7	5.40%	-94.60%	
P-A6	P-A7	C-3_G	190	45.9	24.10%	-75.90%	
P-A6	XFA-6-PRI	C-3_F	130	0.6	0.40%	-99.60%	
P-A7	P-A8	с-з_н	190	45.9	24.10%	-75.90%	
P-A8	P-A9 A	C-3_N	280	4.2	1.50%	-98.50%	
P-A8	P-A9	C-3_K	280	4.2	1.50%	-98.50%	
P-A8	P-A10	C-3_L	190	37.7	19.90%	-80.10%	
P-A9	XFA-9A-PRI	C-3_J	130	4.2	3.20%	-96.80%	
P-A9_A	XFA-9B-PRI	C-3_M	130	4.2	3.20%	-96.80%	
P-A10	P-A18	C-3_0	190	37.7	19.90%	-80.10%	
P-	JB-1A	C-15	285	45	15.80%	-84.20%	
P-	D-38	C-29	190	45	23.70%	-76.30%	
P-A18	P-A19	C-3_P	190	37.7	19.90%	-80.10%	
P-A19	XFA-19-PRI	C-3_T	130	4.3	3.30%	-96.70%	
P-A19	P-A20	C-3_R	190	10.5	5.50%	-94.50%	
P-A20	P-A21	C-3_S	190	0	0.00%	-100.00%	
P-A20	P-A22	C-3_U	190	10.5	5.50%	-94.50%	
P-A20-1	B175	C-4_A	170	28.7	16.90%	-83.10%	
P-A20-1	A22	C-4_B	170	58	34.10%	-65.90%	
P-A22	P-A23	C-3_V	190	10.5	5.50%	-94.50%	
P-A22 -	D-38	C-1_BS	190	8.5	4.50%	-95.50%	
P-A22.	P-D33	C-1_BQ	400	36.5	9.10%	-90.90%	
P-A23	P-A24	C-3_W	190	10.5	5.50%	-94.50%	
P-A24	P-A25	C-3_Y	190	8.4	4.40%	-95.60%	
P-A24	P-A26	C-3_AA	130	2.4	1.90%	-98.10%	
P-A25	XFA-25-PRI	C-3_Z	130	7	5.40%	-94.60%	
P-A25	XFA-25A-PRI	C-3_X	130	1.4	1.10%	-98.90%	
P-A26	P-A28	C-3_AC	190	2.4	1.30%	-98.70%	
P-A26 SEC	P-A27	C-4_Q	135	8.5	6.30%	-93.70%	
P-A26 SEC	P-	C-4_R	135	0.3	0.20%	-99.80%	
P-A28	P-A29	C-3_AD	190	2.4	1.30%	-98.70%	
P-A29	P-A30	C-3_AE	190	2.4	1.30%	-98.70%	
P-A30	A-31	C-3_AF	190	2.4	1.30%	-98.70%	
P-A30-SEC	B344	C-3_AN	100	2.8	2.80%	-97.20%	
P-A31 (SEC)	P-A30-SEC	C-4_S	280	2.8	1.00%	-99.00%	
P-A31 (SEC)	P-	C-4_0	280	17.2	6.10%	-93.90%	
P-A31 SEC WEST	P-A26 SEC	C-4_P	280	17.2	6.10%	-93.90%	



Subject:	McMurdo Statio	on Load Flow Stu	ldy		
Project No.:	6401748177	Calculation No.:	E002	Rev:	0

P-A32	P-A33	C-3_AH	190	0	0.00%	-100.00%	
P-A32	XFA-32-PRI	C-3_AI	130	2.4	1.90%	-98.10%	
Р-В	JB-1A	C-1_V	765	40.8	5.30%	-94.70%	
P-B1	B10	C-4_V	85	2.8	3.30%	-96.70%	
P-B1	B7	C-4_W	85	2.8	3.30%	-96.70%	
P-B1	P-B82	C-4_X	85	2.8	3.30%	-96.70%	
P-B2	P-B	C-1_W	400	40.8	10.20%	-89.80%	
P-B3	P-B2	C-1_X	190	40.8	21.50%	-78.50%	
P-B3-SEC	P-B5-SEC	C-4_Z	85	5.6	6.60%	-93.40%	
P-B3-SEC	P-B1	C-4_U	230	8.4	3.60%	-96.40%	
P-B4	P-B3	C-1_Z	190	40.1	21.10%	-78.90%	
P-85	P-B4	C-1_AA	190	40.1	21.10%	-78.90%	
P-B5-SEC	B4-LOUNGE	C-4_AA	85	2.8	3.30%	-96.70%	
P-B5-SEC	B4-THEATER	C-4_AB	85	2.8	3.30%	-96.70%	
P-B6	P-85	C-1_AB	190	40.1	21.10%	-78.90%	
P-B8	P-86	C-1_AC	190	40.1	21.10%	-78.90%	
P-89	P-88	C-1_AD	190	40.1	21.10%	-78.90%	
P-B10	P-89	C-1_AE	190	40.1	21.10%	-78.90%	
P-B11	P-B10	C-1 AK	400	11.8	2.90%	-97.10%	
P-B12	P-B11	C-1_AM	190	9	4.70%	-95.30%	
P-B13	P-B12	C-1 AO	190	6.2	3.30%	-96.70%	
P-B14	P-B13	C-1_AP	190	6.2	3.30%	-96.70%	
P-B15	P-B14	 C-1 AQ	190	6.2	3.30%	-96.70%	
P-B16	P-B10	C-1_AF	190	28.2	14.80%	-85.20%	
P-B17	P-B16	 C-1 AG	190	28.2	14.80%	-85.20%	
P-B20	P-B10	C-1_AI	130	0.6	0.40%	-99.60%	
P-B82	P-882 A	C-4 Y	85	2.8	3.30%	-96.70%	
P-C1	SW-4	C-1 AT	855	68.1	8.00%	-92.00%	
P-D9	D10	C-11	190	36.5	19.20%	-80,80%	
P-D33	P-D37NC	C-1 BO	190	36.5	19.20%	-80.80%	
P-D36	JB-36D	C-11 AD	400	5.9	1.50%	-98.50%	
P-D36	JB-5	C-32	280	0.9	0.30%	-99.70%	
P-D36	RWE POWERS		400	0.7	0.20%	-99.80%	
P-D36	P-D9	C-11_AC	190	36.5	19.20%	-80.80%	
		_	190				
P-D39 P-D40	P-A22 - P-D39	C-1_CM C-1_CN	190	8.5	4.50%	-95.50% -95.50%	
POLE 167	POLE - B166	DIST	190	30.4	24.30%	-95.50%	
POLE 167			285	42	14.70%	-75.70%	
POWER PLANT A	SW-2	C-1_H					
	BUS-9_C	C-2_C	280	107.2	0.00%	-100.00%	
POWER PLANT A	GEN 5	C-2_A	280	107.2	38.30%	-61.70%	
POWER PLANT A	GEN 6	C-2_B	280	107.2	38.30%	-61.70%	
	SW-1	C-1_F	285	52.5	18.40%	-81.60%	
POWER PLANT A	SW-5	C-1_K	765	39.3	5.10%	-94.90%	
POWER PLANT A	SW-4	C-1_J	285	54.8	19.20%	-80.80%	
POWER PLANT A	GEN-4	C-2	280	107.2	38.30%	-61.70%	



Subject:	McMurdo Statio	IcMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0			

#### Line Overload Report

Overload Threshold = 10.00 %

POWER PLANT A	SW-3	C-1_I	765	44.8	5.90%	-94.10%	
POWER PLANT A_	SW-2	C-1_0	765	20.6	2.70%	-97.30%	
POWER PLANT A_	SW-1	C-1_M	855	33	3.90%	-96.10%	
POWER PLANT A_	SW-5	C-1_R	765	39.3	5.10%	-94.90%	
POWER PLANT A_	SW-3	C-1_P	855	9.5	1.10%	-98.90%	
POWER PLANT A_	SW-4	C-1_Q	285	13.5	4.70%	-95.30%	
POWER PLANT A_	SW-6	C-1_U	765	36.3	4.70%	-95.30%	
RWE POWERSTO	BUS-15	C-34	280	0.7	0.30%	-99.70%	
SW-1	BUS-3	C-1	765	0.1	0.00%	-100.00%	
SWA-01	JB-A2	C-17	155	23.1	14.90%	-85.10%	
SWA-01	P-A19	C-16	280	23.1	8.20%	-91.80%	
SWC-01	PUMP HOUSE	C-26	140	4.2	3.00%	-97.00%	
SWC-01	JB-C1	C-21	280	8.2	2.90%	-97.10%	
SWC-01	XFC-B2B5 PRI	C-24	155	56.1	36.20%	-63.80%	
SWE-01	CORE FREEZE	C-30_A	155	5.6	3.60%	-96.40%	
SWE-01	XFE-A PRI	C-30	140	21	15.00%	-85.00%	
T-L (XFE-A)	SW-5	C-1_G	765	0	0.00%	-100.00%	
T-PH-1	JB-6B	C-1_BC	765	10.4	1.40%	-98.60%	
TW-1 PRI	JB-WP	C-1_AZ	765	10.4	1.40%	-98.60%	
TW-2 PRI	JB-WP	C-1_BA	765	10.4	1.40%	-98.60%	
TW-2 PRI_A	JB-6B	C-1_BD	765	10.4	1.40%	-98.60%	
WTG-1	WTG-	C-36	760	0	0.00%	-100.00%	
WTG-1_C	SCOTT BASE G	C-36_C	760	0	0.00%	-100.00%	
WTG-2	SCOTT BASE G	C-36_D	760	0	0.00%	-100.00%	
XFA-4 SEC	HTA_B	C-6_G	175	24.2	13.80%	-86.20%	
XFA-4 SEC	HTA_A	C-6_F	175	24.2	13.80%	-86.20%	
XFA-4 SEC	HTA	C-6_E	175	24.2	13.80%	-86.20%	
XFA-4 SEC	HTP4	C-6_J	175	12.1	6.90%	-93.10%	
XFA-4 SEC	HTP-5	C-6_I	175	3.6	2.10%	-97.90%	
XFA-4 SEC	HTP6	C-6_H	175	0	0.00%	-100.00%	
XFA-19-SEC	P-A20-1	C-4	230	86.7	37.70%	-62.30%	
XFA-32-SEC	B185	C-4_M	170	14.3	8.40%	-91.60%	
XFA-32-SEC	P-A31 (SEC)	C-4_N	280	20	7.10%	-92.90%	
XFA-32-SEC	B174	C-4_L	170	14.3	8.40%	-91.60%	
XFB-3-PRI	P-B3	C-1_Y	125	0.7	0.60%	-99.40%	
XFB-3-SEC	P-B3-SEC	C-4_T	230	14	6.10%	-93.90%	
XFB-11-PRI	P-B11	C-1_AL	130	2.8	2.10%	-97.90%	
XFB-12-PRI	P-B12	C-1_AN	130	2.8	2.10%	-97.90%	
XFB-15 SEC	B-15-SEC	C-10	170	113.5	66.70%	-33.30%	
XFB-15-PRI	P-B15	C-1_AS	130	5.7	4.40%	-95.60%	
XFB-15A-PRI	P-B15	C-1_AR	130	0.6	0.40%	-99.60%	
XFB-17 SEC	B-155	C-13	1520	563.7	37.10%	-62.90%	
XFB-17-PRI	P-B17	C-1_AH	130	28.2	21.70%	-78.30%	
XFB-20 SEC	B136A	C-4_AC	115	5.6	4.80%	-95.20%	
XFB-20 SEC	B136C	C-4_AD	115	5.6	4.80%	-95.20%	



Subject:	McMurdo Statio	cMurdo Station Load Flow Study					
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

# Line Overload Report

Overload Threshold = 10.00 %

XFB-20-PRI	P-B20	C-1_AJ	130	0.6	0.40%	-99.60%	
XFC-B2B5-SEC	B-3	C-25	1520	302	19.90%	-80.10%	
XFC-B2B5-SEC	B-5	C-25_A	1140	181.1	15.90%	-84.10%	
XFD-17 PRI	D-17	C-1_CA	130	5.6	4.30%	-95.70%	
XFD-17 PRI_B	D18	C-1_CE	130	5.6	4.30%	-95.70%	
XFD-17-1 PRI	D-17-1	C-1_CB	130	5.6	4.30%	-95.70%	
XFD-17-1 PRI_A	D-17-1_A	C-1_CI	130	2.8	2.20%	-97.80%	
XFD-18 PRI	D18	C-1_CD	130	5.6	4.30%	-95.70%	
XFD-18-SEC	B341	C-12	230	112	48.70%	-51.30%	
XFD-19 SEC	B68	C-12_A	230	112	48.70%	-51.30%	
XFD-25 PRI	D24	C-1_CF	130	5.6	4.30%	-95.70%	
XFD-25-SEC	B191	C-12_B	230	112	48.70%	-51.30%	
XFD-35 PRI	D-35	C-1_CG	130	2.8	2.20%	-97.80%	
XFD-42-B PRI	JB-4	C-1_BY	130	2.8	2.10%	-97.90%	
XFD-42A-PRI	JB-3	C-1_BG	130	2.8	2.10%	-97.90%	
XFF-D-PRI	JB-6B	C-1_BE	765	10.4	1.40%	-98.60%	



Subject:	McMurdo Statio	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0			

## **Transformer Overload Report**

Overload Threshold = 10.00 %

Transformer				Load			
Name	From Bus	To Bus Name	Rated Amps	Load Amps	Loaded%	OverLoaded%	Comment
T-PH-1	T-PH-1	T-PH-1 SEC	300.7	90.4	30.10%	-69.90%	connent
T-W-2	TW-2 PRI	T-W-2 SEC	270.6	90.4	33,40%	-66.60%	
TX-1	T-L (XFE-A)	LOAD BANKS	1202.8	0	0.00%	-100.00%	
	TW-1 PRI	T-W-1 SEC	832.7	208.7	25.10%	-74.90%	
TX-1_A							
TX-2	XFD-36-D1	B-221	416.4	14	3.40%	-96.60%	
TX-2_A	XFD-36-D2	USAP B70	208.2	2.8	1.30%	-98.70%	
TX-3		PUMP HOUSE-SEC	135.3	36.4	26.90%	-73.10%	
TX-4	XFA-VEOC PRI	VEOC	601.4	182.8	30.40%	-69.60%	
XFA-4	XFA-4 PRI	XFA-4 SEC	270.6	88.4	32.70%	-67.30%	
XFA-5	XFA-5-PRI	XFA-5-SEC	1387.9	139.6	10.10%	-89.90%	
XFA-6	XFA-6-PRI	XFA-6-SEC	1387.9	11.1	0.80%	-99.20%	
XFA-9-A	XFA-9A-PRI	XFA-9-A-SEC	277.6	83.8	30.20%	-69.80%	
XFA-9-B	XFA-9B-PRI	XFA-9-B-SEC	416.4	83.8	20.10%	-79.90%	
XFA-10B	XFA-10B-PRI	XFA-10B-SEC	416.4	41.9	10.10%	-89.90%	
XFA-19	XFA-19-PRI	XFA-19-SEC	416.4	86.7	20.80%	-79.20%	
XFA-25	XFA-25-PRI	XFA-25-SEC	1387.9	140	10.10%	-89.90%	
XFA-25A	XFA-25A-PRI	XFA-25-A-SEC	277.6	27.9	10.10%	-89.90%	
XFA-32	XFA-32-PRI	XFA-32-SEC	416.4	48.3	11.60%	-88.40%	
XFB-3	XFB-3-PRI	XFB-3-SEC	208.2	14	6.70%	-93.30%	
XFB-11	XFB-11-PRI	XFB-11 SEC	624.5	55.8	8.90%	-91.10%	
XFB-12	XFB-12-PRI	XFB-12 SEC	624.5	55.9	8.90%	-91.10%	
XFB-15	XFB-15-PRI	XFB-15 SEC	832.7	113.5	13.60%	-86.40%	
XFB-15A	XFB-15A-PRI	XFB-15A SEC	270.6	4.8	1.80%	-98.20%	
XFB-17	XFB-17-PRI	XFB-17 SEC	2775.7	563.7	20.30%	-79.70%	
XFB-20	XFB-20-PRI	XFB-20 SEC	208.2	11.1	5.40%	-94.60%	
XFC-8-C	XFC-8C PRI	XFC-8C SEC	624.5	83.5	13.40%	-86.60%	
XFC-8B	XFC-8A PRI	XFC-8B SEC	208.2	83.5	40.10%	-59.90%	
XFC-B2-B5	XFC-B2B5 PRI	XFC-B2B5-SEC	601.4	483.1	80.30%	-19.70%	
XFD-17	XFD-17 PRI	XFD-17 SEC	208.2	111.9	53.80%	-46.20%	
XFD-17-1	XFD-17-1 PRI	XFD-17-1 SEC	416.4	112.3	27.00%	-73.00%	
XFD-18	XFD-18 PRI	XFD-18-SEC	208.2	112	53.80%	-46.20%	
XFD-19	XFD-17 PRI B	XFD-19 SEC	277.6	112	40.40%	-59.60%	
XFD-25	XFD-25 PRI	XFD-25-SEC	277.6	112	40.40%	-59.60%	
XFD-35	XFD-35 PRI	XFD-35 SEC	624.5	56.7	9.10%	-90.90%	
XFD-36-A	XFD-17-	XFD-36A SEC	277.6				
XFD-36-B	D17-2_A	XFD-36A SEC_A	416.4	63			
XFD-42_A		XFD-42A SEC	208.2	55.8	26.80%	-73.20%	
XFD-42_B	XFD-42-B PRI		208.2	55.8	26.80%	-73.20%	
XFD-44	XFD-42-DTH	XFD-44-SEC	1387.9	5.6	0.40%	-99.60%	
XFD-45	XFD-45-PRI	XFD-45-SEC	208.2	2.8		-98.70%	
XFE-A.	XFE-A PRI	BLDG 10	601.4	181.7	30.20%	-69.80%	
XFE-B	XFE-B PRI	XFE-B SEC	2775.7	559.5		-79.80%	
				48.3			
XFE-C.	CORE FREEZE		270.6			-82.20%	
XFF-B	TW-2 PRI_A	T-W-2 SEC_A	832.7	208.7	25.10%	-74.90%	
XFF-D	XFF-D-PRI	XFF-D-SEC	360.8	90.4	25.10%	-74.90%	



Subject:	McMurdo Statio	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0			

From B	lus	To Bus		Losse	25
Name	Base kV	Name	Base kV	kW	kVAR
A-31	4.16	P-A32	4.16	0	-0.1
A20-1	0.208	B168	0.208	0	0
A22	0.208	D39 SEC	0.208	0	0
A22	0.208	A22-2	0.208	0.1	0
A22	0.208	B192	0.208	0	0
A22-2	0.208	A22-3	0.208	0	0
A22-2	0.208	A23	0.208	0	0
A22-3	0.208	B72	0.208	0	0
A23	0.208	B132	0.208	0	0
A23	0.208	A20-1	0.208	0	0
B-15-SEC	0.208	B-15-SEC_B	0.208	0	0
B-15-SEC	0.208	B-15-SEC_A	0.208	0.3	0.1
B-15-SEC_A	0.208	B-182 COM	0.208	0.2	0
B-15-SEC_A	0.208	B182 VEH HTRS 1	0.208	0	0
B-15-SEC_B	0.208	B182 VEH HTRS 2	0.208	0	0
B-167	0.208	POLE 167	0.208	0	0
B-167	0.208	BUS-9	0.208	0	0
B-188	0.208	POLE 167	0.208	0	0
B18	4.16	P-B17	4.16	0	-0.1
B73	0.208	P-35 SEC	0.208	0	0
B132	0.208	B141	0.208	0	0
B141	0.208	D-40 SEC	0.208	0	0
B150	0.208	XFD-36A SEC	0.208	0.1	0
B160	0.208	P-35 SEC	0.208	0	0
B166	0.208	POLE-B166	0.208	0	0
BUILDING 4	0.208	XFD-17-1 SEC	0.208	0.1	0
BUS-1	4.16	SW-6	4.16	0	0
BUS-2	4.16	P-C1	4.16	0	0
BUS-2	4.16	SWC-01	4.16	0	0
BUS-3	4.16	BUS-4	4.16	0	0
BUS-4	4.16	BUS-5	4.16	0	0
BUS-5	4.16	BUS-6	4.16	0	0
BUS-6	4.16	JB-TSPG	4.16	0	-0.6
BUS-8	4.16	JB-TSPG	4.16	0	0
BUS-27	4.16	D28	4.16	0	-0.1
CORE FREEZER PR	4.16	CORE FREEZER SEC	0.48	0	0.1
D-17	4.16	D-17-1	4.16	0	0
D-17-1	4.16	D17-2	4.16	0	0
D-17-1_A	4.16	D17-2_A	4.16	0	0
D-29	4.16	D-30	4.16	0	-0.1
D-30	4.16	D-31	4.16	0	-0.1
D-31	4.16	D-33	4.16	0	0
D-33	4.16	D-34	4.16	0	-0.1
D-34	4.16	D-35	4.16	0	0
D-38	4.16	P-A22.	4.16	0.1	-0.1
D-41	4.16	P-D40	4.16	0	0
D-42	4.16	D-41	4.16	0	0
D-43	4.16	D-42	4.16	0	0



Subject:	McMurdo Statio	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0			

Branch Losses	s Report				
From E	Bus	To Bus		Loss	es
Name	Base kV	Name	Base kV	kW	kVAR
D-44	4.16	D-43	4.16	0	0
D-44	4.16	XFD-44	4.16	0	-0.2
D-44	4.16	XFD-45-PRI	4.16	0	-0.1
D10	4.16	D11	4.16	0.1	0
D11	4.16	D12	4.16	0.1	0
D12	4.16	D18	4.16	0	-0.1
D12	4.16	D13	4.16	0	-0.1
D13	4.16	D14	4.16	0	-0.1
D14	4.16	D15	4.16	0	0
D15	4.16	D16	4.16	0	0
D16	4.16	D-17	4.16	0	0
D17-2_A	4.16	XFD-36A SEC_A	0.208	0	0
D18	4.16	D19	4.16	0	-0.1
D19	4.16	D20	4.16	0	-0.1
D20	4.16	D21	4.16	0	-0.1
D21	4.16	D22	4.16	0	-0.1
D22	4.16	D23	4.16	0	-0.1
D23	4.16	D26	4.16	0	-0.1
D23	4.16		4.16	0	-0.1
D26		BUS-27	4.16	0	-0.1
D26		P-D36	4.16	0	-0.1
D28		D-29	4.16	0	0
D39 SEC		D40 SEC	0.208	0	0
JB		XFC-8C PRI	4.16	0	-0.8
JB		XFC-8A PRI	4.16	0	-0.2
JB-1A		SW-1	4.16	0.1	0
JB-3		D-42	4.16	0	-0.5
JB-3A		SW-3	4.16	0	0.5
JB-4	4.16		4.16	0	0
JB-5		XFD-36-D1	4.16	0	-0.3
JB-5		XFD-36-D2	4.16	0	-1.2
JB-6B		SW-6	4.16	0	-0.2
JB-36D		D-17-1_A	4.16	0	-0.2
JB-A2		XFA-10B-PRI	4.16	0	-0.7
JB-A2		XFA-VEOC PRI	4.16	0	-0.2
JB-C1	4.16		4.16	0	-0.2
JB-E1		XFE-B PRI	4.16	0	-0.0
JB-E1		SWE-01	4.16	0	0
JB-E1					-0.4
		JB-3A	4.16	0.4	
JB-WP		SW-6	4.16	0	-0.4
KIWI		D-42		0	-2.4
LDB HE COMPRES		XFD-36A SEC_A	0.208	0	0
P-35 SEC		POLE-B166	0.208	1.1	0.2
P-35 SEC		XFD-35 SEC	0.208	0	0
P-A2		P-A3	4.16	0.3	0
P-A2		SW-2	4.16	0	0
P-A3	4.16	P-A4	4.16	0.1	0



Subject:	McMurdo Statio	on Load Flow Stu	ıdy		
Project No.:	6401748177	Calculation No.:	E002	Rev:	0

From	Bus	To Bus		Loss	25
Name	Base kV	Name	Base kV	kW	kVAR
P-A4	4.16	P-A5	4.16	0.2	0
P-A4	4.16	XFA-4 PRI	4.16	0	0
P-A5	4.16	P-A6	4.16	0.2	-0.1
P-A5	4.16	XFA-5-PRI	4.16	0	0
P-A6	4.16	P-A7	4.16	0.1	0
P-A6	4.16	XFA-6-PRI	4.16	0	-0.1
P-A7	4.16	P-A8	4.16	0.2	0
P-A8	4.16	P-A10	4.16	0.1	0
P-A8	4.16	P-A9_A	4.16	0	-0.2
P-A8	4.16	P-A9	4.16	0	-0.1
P-A9	4.16	XFA-9A-PRI	4.16	0	0
P-A9_A	4.16	XFA-9B-PRI	4.16	0	0
P-A10	4.16	P-A18	4.16	0.1	0
P-	4.16	JB-1A	4.16	0.4	-0.6
P-	4.16	D-38	4.16	0.2	0
P-A18	4.16	P-A19	4.16	0.1	0
P-A19	4.16	P-A20	4.16	0	0
P-A19	4.16	XFA-19-PRI	4.16	0	0
P-A20	4.16	P-A22	4.16	0	-0.1
P-A20	4.16	P-A21	4.16	0	-0.1
P-A20-1	0.208	A22	0.208	0.2	0
P-A20-1	0.208	B175	0.208	0	0
P-A22	4.16	P-A23	4.16	0	-0.1
P-A22 -	4.16	D-38	4.16	0	-0.1
P-A22.	4.16	P-D33	4.16	0	-0.1
P-A23	4.16	P-A24	4.16	0	-0.1
P-A24	4.16	P-A26	4.16	0	-0.1
P-A24	4.16	P-A25	4.16	0	-0.1
P-A25	4.16	XFA-25A-PRI	4.16	0	0
P-A25	4.16	XFA-25-PRI	4.16	0	0
P-A26	4.16	P-A28	4.16	0	-0.1
P-A26 SEC	0.208	P-A26 LITE SOUTH	0.208	0	0
P-A26 SEC	0.208	P-A27	0.208	0	0
P-A28	4.16	P-A29	4.16	0	0
P-A29	4.16	P-A30	4.16	0	-0.1
P-A30	4.16	A-31	4.16	0	-0.1
P-A30-SEC	0.208	B344	0.208	0	0
P-A31 (SEC)	0.208	P-A3O-SEC	0.208	0	0
P-A31 (SEC)	0.208	P-A31 SEC WEST	0.208	0	0
P-A31 SEC WEST	0.208	P-A26 SEC	0.208	0	0
P-A32	4.16	P-A33	4.16	0	0
P-A32	4.16	XFA-32-PRI	4.16	0	0
P-B	4.16	JB-1A	4.16	0	0
P-B1	0.208	B10	0.208	0	0
P-B1	0.208	B7	0.208	0	0
P-B1	0.208	P-B82	0.208	0	0
P-B2	4.16	P-B	4.16	0	0
P-B3	4.16	P-B2	4.16	0.1	0



Subject:	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

Base kV 0.208 0.208 4.16 4.16 0.208	kW 0	kVAR
0.208 4.16 4.16	0	
4.16 4.16		0
4.16	0	0
	0.1	0
0.208	0.1	0
	0	0
0.208	0	0
4.16	0.1	0
4.16	0.1	0
4.16	0.1	0
4.16	0.1	0
4.16	0	-0.1
4.16	0	0
4.16	0	0
4.16	0	-0.1
4.16	0	-0.1
4.16	0	0
4.16	0.1	-0.1
4.16	0	-0.1
0.208	0	0
4.16	0	-0.1
4.16	0.1	0
4.16	0.1	0
4.16	0	-3.5
4.16	0	0
TORE 4.16	0	-0.1
4.16	0.1	0
4.16	0	-0.1
4.16	0	-0.1
0.208	0.1	0
4.16	0.1	-0.1
4.16	0	0
4.16	0.1	0.1
4.16	0.1	0.1
4.16	0.1	0.1
4.16	0.1	-0.1
4.16	0.1	-0.1
4.16	0.1	-0.1
4.16	0	0
4.16	0	-0.1
4.16	0	-0.5
4.16	0	-0.5
		-0.1
		-0.2
		0.2
		0.4
	4.16 4.16 4.16 5-SEC 0.48	4.16 0.1 4.16 0 4.16 0



Subject:	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

From Bus		To Bus		Losses		
Name	Base kV	Name	Base kV	kW	kVAR	
RWE POWERSTO	4.16	BUS-15	4.16	0	-5	
RE						
SCOTT BASE G1	0.4	SCOTT BASE G1	0.4	0	0	
SCOTT BASE G2	0.4	SCOTT BASE G2	0.4	0	0	
SW-1	4.16	BUS-3	4.16	0	0	
SWA-01	4.16	JB-A2	4.16	0	0	
SWA-01		P-A19	4.16	0	0	
SWC-01	4.16	JB-C1	4.16	0	-0.3	
SWC-01		PUMP HOUSE PRI	4.16	0	-0.1	
SWC-01	4.16	XFC-B2B5 PRI	4.16	0.7	0	
SWE-01	4.16	CORE FREEZER PRI	4.16	0	0	
SWE-01	4.16	XFE-A PRI	4.16	0	-0.1	
T-L (XFE-A)	4.16	LOAD BANKS	0.48	0	0	
T-L (XFE-A)	4.16	SW-5	4.16	0	0	
T-PH-1	4.16	JB-6B	4.16	0	-0.2	
T-PH-1	4.16	T-PH-1 SEC	0.48	0	0.3	
TW-1 PRI	4.16	T-W-1 SEC	0.208	0	0.3	
TW-1 PRI	4.16	JB-WP	4.16	0	-0.1	
TW-2 PRI	4.16	T-W-2 SEC	0.48	0	0.3	
TW-2 PRI	4.16	JB-WP	4.16	0	-0.1	
TW-2 PRI_A	4.16	JB-6B	4.16	0	-0.2	
TW-2 PRI_A	4.16	T-W-2 SEC_A	0.208	0	0.3	
WTG-SOURCE-1	0.4	WTG-SOURCE-1	0.4	0	0	
WTG-1	0.4	WTG-SOURCE-1	0.4	0	0	
WTG-1_C	0.4	SCOTT BASE G1	0.4	0	0	
WTG-2	0.4	SCOTT BASE G2	0.4	0	0	
XFA-4 PRI	4.16	XFA-4 SEC	0.48	0.3	1.1	
XFA-4 SEC	0.48	HTA_B	0.48	0	0	
XFA-4 SEC	0.48	HTP4	0.48	0	0	
XFA-4 SEC	0.48	HTP6	0.48	0	0	
XFA-4 SEC	0.48	HTA_A	0.48	0	0	
XFA-4 SEC	0.48	HTA	0.48	0	0	
XFA-4 SEC	0.48	HTP-5	0.48	0	0	
XFA-5-PRI	4.16	XFA-5-SEC	0.208	0.1	0.2	
XFA-6-PRI	4.16	XFA-6-SEC	0.208	0	0	
XFA-9A-PRI	4.16	XFA-9-A-SEC	0.208	0	0.1	
XFA-9B-PRI	4.16	XFA-9-B-SEC	0.208	0	0.1	
XFA-10B-PRI	4.16	XFA-10B-SEC	0.208	0	0	
XFA-19-PRI	4.16	XFA-19-SEC	0.208	0	0.1	
XFA-19-SEC	0.208	P-A20-1	0.208	0.1	0.1	
XFA-25-PRI	4.16	XFA-25-SEC	0.208	0.1	0.2	
XFA-25A-PRI	4.16	XFA-25-A-SEC	0.208	0	0	
XFA-32-PRI	4.16	XFA-32-SEC	0.208	0	0.1	
XFA-32-SEC	0.208	B185	0.208	0	0	
XFA-32-SEC	0.208	B174	0.208	0	0	



Subject:	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

From Bus		To Bus	Losses		
Name Base kV		Name Base kV		kW kVAR	
XFA-VEOC PRI	4.16	VEOC	0.48	0.5	2.3
XFB-3-PRI	4.16	XFB-3-SEC	0.208	0	0
XFB-3-PRI	4.16	P-B3	4.16	0	0
XFB-3-SEC	0.208	P-B3-SEC	0.208	0	0
XFB-11-PRI	4.16	P-B11	4.16	0	0
XFB-11-PRI	4.16	XFB-11 SEC	0.208	0	0
XFB-12-PRI	4.16	XFB-12 SEC	0.208	0	0.1
XFB-12-PRI	4.16	P-B12	4.16	0	0
XFB-15 SEC	0.208	B-15-SEC	0.208	0.1	0
XFB-15-PRI	4.16	P-B15	4.16	0	0
XFB-15-PRI	4.16	XFB-15 SEC	0.208	0	0.2
XFB-15A-PRI	4.16	XFB-15A SEC	0.48	0	0
XFB-15A-PRI	4.16	P-B15	4.16	0	0
XFB-17 SEC	0.208		0.208	0.2	0.3
XFB-17-PRI		P-B17	4.16	0.1	0
XFB-17-PRI	4.16	XFB-17 SEC	0.208	0.9	3.9
XFB-20 SEC	0.208	B136A	0.208	0	0
XFB-20 SEC	0.208	B136C	0.208	0	0
XFB-20-PRI	4.16	XFB-20 SEC	0.208	0	0
XFB-20-PRI	4.16	P-B20	4.16	0	0
XFC-8A PRI		XFC-8B SEC	0.208	0	0.1
XFC-8C PRI		XFC-8C SEC	0.208	0	0.1
XFC-B2B5 PRI		XFC-B2B5-SEC	0.48	1.4	7.9
XFC-B2B5-SEC	0.48		0.48	0.1	0.1
XFC-B2B5-SEC	0.48	8-5	0.48	0	0
XFD-17 PRI		XFD-17 SEC	0.208	0	0.2
XFD-17 PRI		D-17	4.16	0	0
XFD-17 PRI_B		XFD-19 SEC	0.208	0	0.2
XFD-17 PRI_B	4.16		4.16	0	0
XFD-17-1 PRI		XFD-17-1 SEC	0.208	0	0.2
XFD-17-1 PRI		D-17-1	4.16	0	-0.1
XFD-17-1 PRI_A		D-17-1_A	4.16	0	-0.1
XFD-17-1 PRI_A		XFD-36A SEC	0.208	0	0
XFD-18 PRI		XFD-18-SEC	0.208	0	0.2
XFD-18 PRI	4.16		4.16	0	0.2
XFD-18-SEC	0.208		0.208	0	0
XFD-19 SEC	0.208		0.208	0	0
XFD-25 PRI		D24	4.16	0	0
XFD-25 PRI		XFD-25-SEC	0.208	0	0.2
XFD-25-SEC	0.208		0.208	0	0.2
XFD-35 PRI		D-35	4.16	0	0
XFD-35 PRI		XFD-35 SEC	0.208	0	0
XFD-36-D1		B-221	0.208	0	0
XFD-36-D2		USAP B70	0.208	0	0
XFD-42-B PRI		XFD-42A SEC_A	0.208	0	0
XFD-42-B PRI		JB-4	4.16	0	0



Subject:	McMurdo Station Load Flow Study					
Project No.:	6401748177	Calculation No.:	E002	Rev:	0	

From Bus		To Bus		Losses	
Name	Base kV	Name	Base kV	kW	kVAR
XFD-42A-PRI	4.16	XFD-42A SEC	0.208	0	0
XFD-42A-PRI	4.16	JB-3	4.16	0	0
XFD-44	4.16	XFD-44-SEC	0.208	0	0
XFD-45-PRI	4.16	XFD-45-SEC	0.208	0	0
XFE-A PRI	4.16	BLDG 10	0.48	0.3	1.5
XFE-B PRI	4.16	XFE-B SEC	0.208	0.4	2
XFF-D-PRI	4.16	JB-6B	4.16	0	-0.2
XFF-D-PRI	4.16	XFF-D-SEC	0.48	0	0.3
Total System Los				13.9	2.2

From E	Bus	To Bus	Drop	
Name	Base kV	Name	Base kV	%
A-31	4.16	P-A32	4.16	0.00%
A20-1	0.208	B168	0.208	0.10%
A22	0.208	B192	0.208	0.10%
A22	0.208	A22-2	0.208	0.50%
A22	0.208	D39 SEC	0.208	0.00%
A22-2	0.208	A22-3	0.208	0.00%
A22-2	0.208	A23	0.208	0.10%
A22-3	0.208	B72	0.208	0.00%
A23	0.208	B132	0.208	0.10%
A23	0.208	A20-1	0.208	0.30%
B-15-SEC	0.208	B-15-SEC_A	0.208	0.90%
B-15-SEC	0.208	B-15-SEC_B	0.208	0.30%
B-15-SEC_A	0.208	B-182 COM	0.208	0.80%
B-15-SEC_A	0.208	B182 VEH HTRS 1	0.208	0.20%
B-15-SEC_B	0.208	B182 VEH HTRS 2	0.208	0.10%
B-167	0.208	BUS-9	0.208	0.00%
B-167	0.208	POLE 167	0.208	-0.30%
B-188	0.208	POLE 167	0.208	-0.30%
B18	4.16	P-B17	4.16	0.00%
B73	0.208	P-35 SEC	0.208	0.00%
B132	0.208	B141	0.208	0.20%
B141	0.208	D-40 SEC	0.208	0.00%
B150	0.208	XFD-36A SEC	0.208	-0.30%
B160	0.208	P-35 SEC	0.208	0.00%
B166	0.208	POLE-B166	0.208	-0.30%



Subject:	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

Name         Base kV         Name         Base kV         %           BUILDING 4         0.208         XFD-17-1 SEC         0.208         -0.           BUS-1         4.16         SW-6         4.16         0.           BUS-2         4.16         SWC-01         4.16         0.           BUS-2         4.16         PC1         4.16         0.           BUS-3         4.16         BUS-5         4.16         0.           BUS-4         4.16         BUS-5         4.16         0.           BUS-5         4.16         BUS-6         4.16         0.           BUS-4         4.16         BUS-6         4.16         0.           BUS-5         4.16         BUS-6         4.16         0.           BUS-27         4.16         D28         4.16         0.           CORE FREEZER PR         4.16         D17-2         4.16         0.           D-17-1         4.16         D17-2_A         4.16         0.           D-30         4.16         D-33         4.16         0.           D-31         4.16         D-33         4.16         0.           D-33         4.16         D-34 <t< th=""><th>p</th></t<>	p
BUILDING 4         0.208         KFD-17-1 SEC         0.208         -0.           BUS-1         4.16         SW-6         4.16         0.           BUS-2         4.16         SWC-01         4.16         0.           BUS-2         4.16         P-C1         4.16         0.           BUS-3         4.16         BUS-5         4.16         0.           BUS-4         4.16         BUS-5         4.16         0.           BUS-5         4.16         BUS-6         4.16         0.           BUS-6         4.16         JB-TSPG         4.16         0.           BUS-7         4.16         D28         4.16         0.           BUS-7         4.16         D28         4.16         0.           BUS-7         4.16         D28         4.16         0.           D-17         4.16         D28         4.16         0.           D-17.1         4.16         D17-2         4.16         0.           D-17.1         4.16         D-30         4.16         0.           D-30         4.16         D-30         4.16         0.           D-31         4.16         D-35         4.16	-
BUS-2         4.16         SWC-01         4.16         0.           BUS-2         4.16         P-C1         4.16         0.           BUS-3         4.16         BUS-4         4.16         0.           BUS-4         4.16         BUS-5         4.16         0.           BUS-5         4.16         BUS-5         4.16         0.           BUS-6         4.16         JB-TSPG         4.16         0.           BUS-7         4.16         D28         4.16         0.           BUS-8         4.16         JB-TSPG         4.16         0.           BUS-7         4.16         D28         4.16         0.           CORE FREEZER PR         4.16         D17-2         4.16         0.           D-17         4.16         D17-2         4.16         0.           D-17-1         4.16         D17-2         4.16         0.           D-30         4.16         D-30         4.16         0.           D-31         4.16         D-33         4.16         0.           D-33         4.16         D-34         4.16         0.           D-41         4.16         D-42         4.16	.30%
BUS-2         4.16         P-C1         4.16         0           BUS-3         4.16         BUS-4         4.16         0           BUS-4         4.16         BUS-5         4.16         0           BUS-5         4.16         BUS-6         4.16         0           BUS-6         4.16         JB-TSPG         4.16         0           BUS-8         4.16         JB-TSPG         4.16         0           BUS-7         4.16         D28         4.16         0           BUS-8         4.16         D28         4.16         0           CORE FREEZER PR         4.16         D17-1         4.16         0           D-17         4.16         D17-2         4.16         0           D-17.1         4.16         D17-2, A         4.16         0           D-30         4.16         D-31         4.16         0           D-31         4.16         D-33         4.16         0           D-33         4.16         D-34         4.16         0           D-41         4.16         D-42         4.16         0           D-42         4.16         D-42         4.16         0	.00%
BUS-3         4.16         BUS-4         4.16         O           BUS-4         4.16         BUS-5         4.16         BUS-5         4.16         O           BUS-5         4.16         JB-TSPG         4.16         O         O           BUS-6         4.16         JB-TSPG         4.16         O         O           BUS-8         4.16         D28         4.16         O         O           BUS-7         4.16         D28         4.16         O         O           CORE FREEZER PR         4.16         D-17-1         4.16         O         O           D-17         4.16         D17-2         4.16         O         O           D-17-1         4.16         D17-2         4.16         O         O           D-17-1         4.16         D-30         4.16         O         O           D-30         4.16         D-31         4.16         O         O           D-31         4.16         D-33         4.16         O         O           D-33         4.16         D-42         4.16         O         O           D-41         4.16         D-42         4.16         O	.00%
BUS-4         4.16         BUS-5         4.16         BUS-5         4.16         BUS-6         4.16         O           BUS-5         4.16         JB-TSPG         4.16         O         O           BUS-8         4.16         JB-TSPG         4.16         O         O           BUS-7         4.16         D28         4.16         O         O           CORE FREEZER PR         4.16         D-17-1         4.16         O         O           D-17         4.16         D17-2         4.16         O         O           D-17-1         4.16         D17-2         4.16         O         O           D-17-1         4.16         D17-2         4.16         O         O           D-17-1_A         4.16         D-30         4.16         O         O           D-30         4.16         D-31         4.16         O         O           D-33         4.16         D-33         4.16         O         O           D-41         4.16         D-41         4.16         O         O           D-42         4.16         D-42         4.16         O         O           D-44         4.16	.00%
BUS-5         4.16         BUS-6         4.16         JB-TSPG         4.16         O           BUS-6         4.16         JB-TSPG         4.16         O         O           BUS-8         4.16         JB-TSPG         4.16         O         O           BUS-7         4.16         D28         4.16         O           CORE FREEZER PR         4.16         D-17-1         4.16         O           D-17         4.16         D17-2         4.16         O           D-17-1         4.16         D17-2         4.16         O           D-17-1_A         4.16         D17-2_A         4.16         O           D-29         4.16         D-30         4.16         O         O           D-30         4.16         D-31         4.16         O         O           D-31         4.16         D-33         4.16         O         O           D-34         4.16         D-35         4.16         O         O           D-41         4.16         D-41         4.16         O         O           D-42         4.16         D-42         4.16         O         O           D-44         4.16	.00%
BUS-6         4.16         JB-TSPG         4.16         0           BUS-8         4.16         JB-TSPG         4.16         0           BUS-27         4.16         D28         4.16         0           CORE FREEZER PR         4.16         CORE FREEZER SEC         0.48         0           D-17         4.16         D17-1         4.16         0         0           D-17-1         4.16         D17-2         4.16         0         0           D-17-1_A         4.16         D17-2_A         4.16         0         0           D-17-1_A         4.16         D-30         4.16         0         0           D-30         4.16         D-31         4.16         0         0           D-31         4.16         D-33         4.16         0         0           D-33         4.16         D-34         4.16         0         0           D-34         4.16         D-41         4.16         0         0           D-41         4.16         D-42         4.16         0         0           D-42         4.16         D-43         4.16         0         0           D-44	.00%
BUS-8         4.16         JB-TSPG         4.16         O           BUS-27         4.16         D28         4.16         O           CORE FREEZER PR         4.16         CORE FREEZER SEC         0.48         O           D-17         4.16         D17-1         4.16         O           D-17-1         4.16         D17-2         4.16         O           D-17-1_A         4.16         D17-2_A         4.16         O           D-17-1_A         4.16         D-30         4.16         O           D-29         4.16         D-30         4.16         O           D-30         4.16         D-31         4.16         O           D-31         4.16         D-33         4.16         O           D-33         4.16         D-34         4.16         O           D-34         4.16         D-35         4.16         O           D-41         4.16         D-41         4.16         O           D-42         4.16         D-42         4.16         O           D-44         4.16         D-43         4.16         O           D-44         4.16         D11         4.16         O </td <td>.00%</td>	.00%
BUS-27         4.16         D28         4.16         O           CORE FREEZER PR         4.16         CORE FREEZER SEC         0.48         0.           D-17         4.16         D-17-1         4.16         0.           D-17-1         4.16         D17-2         4.16         0.           D-17-1         4.16         D17-2         4.16         0.           D-17-1_A         4.16         D17-2_A         4.16         0.           D-29         4.16         D-30         4.16         0.           D-30         4.16         D-31         4.16         0.           D-31         4.16         D-33         4.16         0.           D-34         4.16         D-35         4.16         0.           D-34         4.16         D-35         4.16         0.           D-41         4.16         P-400         4.16         0.           D-42         4.16         D-41         4.16         0.           D-44         4.16         D-42         4.16         0.           D-44         4.16         D-43         4.16         0.           D10         4.16         D11         4.16	.00%
CORE FREEZER PR         4.16         CORE FREEZER SEC         0.48         0           D-17         4.16         D-17-1         4.16         0           D-17-1         4.16         D17-2         4.16         0           D-17-1_A         4.16         D17-2_A         4.16         0           D-29         4.16         D-30         4.16         0           D-30         4.16         D-31         4.16         0           D-31         4.16         D-33         4.16         0           D-33         4.16         D-34         4.16         0           D-34         4.16         D-35         4.16         0           D-38         4.16         P-42         4.16         0           D-41         4.16         P-41         4.16         0           D-42         4.16         D-42         4.16         0           D-44         4.16         D-42         4.16         0           D-44         4.16         D-43         4.16         0           D-44         4.16         D11         4.16         0           D10         4.16         D12         4.16         0 </td <td>.00%</td>	.00%
D-17         4.16         D-17-1         4.16         D           D-17-1         4.16         D17-2         4.16         D           D-17-1_A         4.16         D17-2_A         4.16         D           D-29         4.16         D-30         4.16         D           D-30         4.16         D-31         4.16         D           D-31         4.16         D-33         4.16         D           D-33         4.16         D-34         4.16         D           D-34         4.16         D-35         4.16         D           D-38         4.16         P-42         4.16         D           D-41         4.16         P-40         4.16         D           D-42         4.16         D-41         4.16         D           D-43         4.16         D-42         4.16         D           D-44         4.16         D-43         4.16         D           D-44         4.16         D         D         D         D           D-44         4.16         D11         4.16         D         D           D10         4.16         D12         4.16         D </td <td>.00%</td>	.00%
D-17-1         4.16         D17-2         4.16         0           D-17-1_A         4.16         D17-2_A         4.16         0           D-29         4.16         D-30         4.16         0           D-30         4.16         D-31         4.16         0           D-30         4.16         D-31         4.16         0           D-31         4.16         D-33         4.16         0           D-33         4.16         D-33         4.16         0           D-34         4.16         D-35         4.16         0           D-38         4.16         P-A22         4.16         0           D-41         4.16         P-42         4.16         0           D-42         4.16         D-41         4.16         0           D-43         4.16         D-42         4.16         0           D-44         4.16         XFD-44         4.16         0           D-44         4.16         D11         4.16         0           D10         4.16         D12         4.16         0           D11         4.16         D13         4.16         0 <t< td=""><td>.10%</td></t<>	.10%
D-17-1         4.16         D17-2         4.16         0           D-17-1_A         4.16         D17-2_A         4.16         0           D-29         4.16         D-30         4.16         0           D-30         4.16         D-31         4.16         0           D-31         4.16         D-33         4.16         0           D-33         4.16         D-33         4.16         0           D-34         4.16         D-35         4.16         0           D-38         4.16         P-422         4.16         0           D-41         4.16         P-422         4.16         0           D-42         4.16         D-41         4.16         0           D-42         4.16         D-42         4.16         0           D-44         4.16         D-42         4.16         0           D-44         4.16         D-43         4.16         0           D-44         4.16         D11         4.16         0           D10         4.16         D12         4.16         0           D11         4.16         D13         4.16         0 <td< td=""><td>.00%</td></td<>	.00%
D-17-1_A         4.16         D17-2_A         4.16         0           D-29         4.16         D-30         4.16         0.           D-30         4.16         D-31         4.16         0.           D-31         4.16         D-33         4.16         0.           D-31         4.16         D-33         4.16         0.           D-33         4.16         D-34         4.16         0.           D-34         4.16         D-35         4.16         0.           D-38         4.16         P-A22.         4.16         0.           D-41         4.16         P-400         4.16         0.           D-42         4.16         D-41         4.16         0.           D-43         4.16         D-42         4.16         0.           D-44         4.16         XFD-44         4.16         0.           D-44         4.16         D11         4.16         0.           D10         4.16         D12         4.16         0.           D11         4.16         D13         4.16         0.           D12         4.16         D15         4.16         0. <tr< td=""><td>.00%</td></tr<>	.00%
D-30         4.16         D-31         4.16         0.           D-31         4.16         D-33         4.16         0.           D-33         4.16         D-33         4.16         0.           D-33         4.16         D-34         4.16         0.           D-34         4.16         D-35         4.16         0.           D-34         4.16         D-35         4.16         0.           D-38         4.16         P-A22.         4.16         0.           D-41         4.16         P-D40         4.16         0.           D-42         4.16         D-41         4.16         0.           D-43         4.16         D-42         4.16         0.           D-44         4.16         D-43         4.16         0.           D-44         4.16         XFD-44         4.16         0.           D10         4.16         D11         4.16         0.           D11         4.16         D12         4.16         0.           D12         4.16         D13         4.16         0.           D13         4.16         D14         4.16         0.	.00%
D-31         4.16         D-33         4.16         O.           D-33         4.16         D-34         4.16         O.           D-34         4.16         D-35         4.16         O.           D-38         4.16         P-A22.         4.16         O.           D-41         4.16         P-42.         4.16         O.           D-41         4.16         D-41         4.16         O.           D-42         4.16         D-41         4.16         O.           D-43         4.16         D-42         4.16         O.           D-44         4.16         D-43         4.16         O.           D-44         4.16         XFD-44         4.16         O.           D-44         4.16         XFD-44         4.16         O.           D-44         4.16         D11         4.16         O.           D10         4.16         D12         4.16         O.           D11         4.16         D13         4.16         O.           D12         4.16         D14         4.16         O.           D13         4.16         D.17         4.16         O.	.00%
D-33         4.16         D-34         4.16         O.           D-34         4.16         D-35         4.16         O.           D-38         4.16         P-A22.         4.16         O.           D-41         4.16         P-A22.         4.16         O.           D-41         4.16         P-40         4.16         O.           D-42         4.16         D-41         4.16         O.           D-43         4.16         D-42         4.16         O.           D-44         4.16         D-42         4.16         O.           D-44         4.16         D-43         4.16         O.           D-44         4.16         D-43         4.16         O.           D-44         4.16         D-43         4.16         O.           D-44         4.16         D14         4.16         O.           D10         4.16         D11         4.16         O.           D11         4.16         D12         4.16         O.           D12         4.16         D13         4.16         O.           D13         4.16         D15         4.16         O.	.00%
D-34         4.16         D-35         4.16         0.           D-38         4.16         P-A22.         4.16         0.           D-41         4.16         P-D40         4.16         0.           D-42         4.16         D-41         4.16         0.           D-42         4.16         D-41         4.16         0.           D-43         4.16         D-42         4.16         0.           D-44         4.16         D-43         4.16         0.           D-44         4.16         D-43         4.16         0.           D-44         4.16         D-43         4.16         0.           D-44         4.16         XFD-44         4.16         0.           D-44         4.16         XFD-45-PRI         4.16         0.           D10         4.16         D11         4.16         0.           D11         4.16         D12         4.16         0.           D12         4.16         D13         4.16         0.           D13         4.16         D15         4.16         0.           D15         4.16         D17         4.16         0.	.00%
D-34         4.16         D-35         4.16         0.           D-38         4.16         P-A22.         4.16         0.           D-41         4.16         P-D40         4.16         0.           D-42         4.16         D-41         4.16         0.           D-42         4.16         D-41         4.16         0.           D-43         4.16         D-42         4.16         0.           D-44         4.16         D-43         4.16         0.           D-44         4.16         D-43         4.16         0.           D-44         4.16         XFD-44         4.16         0.           D-44         4.16         XFD-45-PRI         4.16         0.           D10         4.16         D11         4.16         0.           D11         4.16         D12         4.16         0.           D12         4.16         D13         4.16         0.           D13         4.16         D15         4.16         0.           D14         4.16         D15         4.16         0.           D15         4.16         D17         4.16         0.	.00%
D-41         4.16         P-D40         4.16         O.           D-42         4.16         D-41         4.16         O.           D-43         4.16         D-42         4.16         O.           D-43         4.16         D-42         4.16         O.           D-44         4.16         D-43         4.16         O.           D-44         4.16         XFD-44         4.16         O.           D-44         4.16         XFD-45-PRI         4.16         O.           D-44         4.16         D11         4.16         O.           D-44         4.16         D11         4.16         O.           D-44         4.16         D12         4.16         O.           D10         4.16         D12         4.16         O.           D11         4.16         D13         4.16         O.           D12         4.16         D18         4.16         O.           D13         4.16         D14         4.16         O.           D14         4.16         D15         4.16         O.           D15         4.16         D.17         4.16         O.	.00%
D-41         4.16         P-D40         4.16         O.           D-42         4.16         D-41         4.16         O.           D-43         4.16         D-42         4.16         O.           D-43         4.16         D-42         4.16         O.           D-44         4.16         D-43         4.16         O.           D-44         4.16         XFD-44         4.16         O.           D-44         4.16         XFD-45-PRI         4.16         O.           D-44         4.16         D11         4.16         O.           D-44         4.16         D11         4.16         O.           D-44         4.16         D12         4.16         O.           D10         4.16         D12         4.16         O.           D11         4.16         D13         4.16         O.           D12         4.16         D18         4.16         O.           D13         4.16         D14         4.16         O.           D14         4.16         D15         4.16         O.           D15         4.16         D.17         4.16         O.	.00%
D-42         4.16         D-41         4.16         0.           D-43         4.16         D-42         4.16         0.           D-43         4.16         D-42         4.16         0.           D-44         4.16         D-43         4.16         0.           D-44         4.16         XFD-44         4.16         0.           D-44         4.16         XFD-45-PRI         4.16         0.           D-44         4.16         D11         4.16         0.           D10         4.16         D12         4.16         0.           D11         4.16         D12         4.16         0.           D12         4.16         D13         4.16         0.           D13         4.16         D14         4.16         0.           D14         4.16         D15         4.16         0.           D15         4.16         D16         4.16         0.           D16         4.16         D17         4.16         0.           D17-2_A         4.16         D19         4.16         0.           D19         4.16         D20         4.16         0. <t< td=""><td>.00%</td></t<>	.00%
D-43         4.16         D-42         4.16         O.           D-44         4.16         D-43         4.16         O.           D-44         4.16         XFD-44         4.16         O.           D-44         4.16         XFD-44         4.16         O.           D-44         4.16         XFD-45-PRI         4.16         O.           D10         4.16         D11         4.16         O.           D11         4.16         D12         4.16         O.           D12         4.16         D13         4.16         O.           D12         4.16         D18         4.16         O.           D13         4.16         D15         4.16         O.           D14         4.16         D15         4.16         O.           D15         4.16         D16         4.16         O.           D15         4.16         D.17         4.16         O.           D17-2_A         4.16         D19         4.16         O.           D19         4.16         D20         4.16         O.           D20         4.16         D21         4.16         O. <t< td=""><td>.00%</td></t<>	.00%
D-44         4.16         D-43         4.16         0.           D-44         4.16         XFD-44         4.16         0.           D-44         4.16         XFD-44         4.16         0.           D-44         4.16         XFD-45-PRI         4.16         0.           D10         4.16         D11         4.16         0.           D11         4.16         D12         4.16         0.           D12         4.16         D13         4.16         0.           D12         4.16         D18         4.16         0.           D13         4.16         D14         4.16         0.           D14         4.16         D15         4.16         0.           D15         4.16         D16         4.16         0.           D16         4.16         D17         4.16         0.           D17-2_A         4.16         XFD-36A SEC_A         0.208         0.           D18         4.16         D19         4.16         0.           D19         4.16         D20         4.16         0.           D20         4.16         D21         4.16         0.	.00%
D-44         4.16         XFD-44         4.16         0.           D-44         4.16         XFD-45-PRI         4.16         0.           D10         4.16         D11         4.16         0.           D10         4.16         D11         4.16         0.           D11         4.16         D12         4.16         0.           D12         4.16         D13         4.16         0.           D12         4.16         D13         4.16         0.           D12         4.16         D14         4.16         0.           D13         4.16         D15         4.16         0.           D14         4.16         D15         4.16         0.           D15         4.16         D16         4.16         0.           D16         4.16         D-17         4.16         0.           D17-2_A         4.16         D19         4.16         0.           D18         4.16         D19         4.16         0.           D19         4.16         D20         4.16         0.           D20         4.16         D21         4.16         0.           D21 <td>.00%</td>	.00%
D-44         4.16         XFD-45-PRI         4.16         0.           D10         4.16         D11         4.16         0.           D11         4.16         D12         4.16         0.           D11         4.16         D12         4.16         0.           D12         4.16         D13         4.16         0.           D12         4.16         D13         4.16         0.           D13         4.16         D14         4.16         0.           D13         4.16         D15         4.16         0.           D14         4.16         D15         4.16         0.           D15         4.16         D16         4.16         0.           D16         4.16         D-17         4.16         0.           D17-2_A         4.16         XFD-36A SEC_A         0.208         0.           D18         4.16         D19         4.16         0.           D19         4.16         D20         4.16         0.           D20         4.16         D21         4.16         0.           D21         4.16         D23         4.16         0.	.00%
D10         4.16         D11         4.16         0.           D11         4.16         D12         4.16         0.           D12         4.16         D13         4.16         0.           D12         4.16         D13         4.16         0.           D12         4.16         D18         4.16         0.           D13         4.16         D14         4.16         0.           D14         4.16         D15         4.16         0.           D15         4.16         D16         4.16         0.           D16         4.16         D-17         4.16         0.           D17-2_A         4.16         XFD-36A SEC_A         0.208         0.           D18         4.16         D19         4.16         0.           D19         4.16         D20         4.16         0.           D20         4.16         D21         4.16         0.           D21         4.16         D23         4.16         0.	.00%
D12         4.16         D13         4.16         0.           D12         4.16         D18         4.16         0.           D13         4.16         D14         4.16         0.           D14         4.16         D15         4.16         0.           D15         4.16         D16         4.16         0.           D16         4.16         D-17         4.16         0.           D17-2_A         4.16         D19         4.16         0.           D18         4.16         D19         4.16         0.           D19         4.16         D20         4.16         0.           D20         4.16         D21         4.16         0.           D21         4.16         D23         4.16         0.	.00%
D12         4.16         D18         4.16         0.           D13         4.16         D14         4.16         0.           D14         4.16         D15         4.16         0.           D15         4.16         D16         4.16         0.           D16         4.16         D-17         4.16         0.           D17-2_A         4.16         D19         4.16         0.           D18         4.16         D19         4.16         0.           D19         4.16         D20         4.16         0.           D20         4.16         D21         4.16         0.           D21         4.16         D23         4.16         0.	.00%
D13         4.16         D14         4.16         0.           D14         4.16         D15         4.16         0.           D15         4.16         D16         4.16         0.           D16         4.16         D-17         4.16         0.           D17-2_A         4.16         D19         4.16         0.           D18         4.16         D19         4.16         0.           D19         4.16         D20         4.16         0.           D20         4.16         D21         4.16         0.           D21         4.16         D23         4.16         0.	.00%
D14         4.16         D15         4.16         0.           D15         4.16         D16         4.16         0.           D16         4.16         D-17         4.16         0.           D17-2_A         4.16         D19         4.16         0.           D18         4.16         D19         4.16         0.           D19         4.16         D20         4.16         0.           D20         4.16         D21         4.16         0.           D21         4.16         D23         4.16         0.	.00%
D15         4.16         D16         4.16         0.0           D16         4.16         D-17         4.16         0.0           D17-2_A         4.16         XFD-36A SEC_A         0.208         0.0           D18         4.16         D19         4.16         0.0           D19         4.16         D20         4.16         0.0           D20         4.16         D21         4.16         0.0           D21         4.16         D23         4.16         0.0	.00%
D16         4.16         D-17         4.16         0.           D17-2_A         4.16         XFD-36A SEC_A         0.208         0.           D18         4.16         D19         4.16         0.           D19         4.16         D20         4.16         0.           D20         4.16         D21         4.16         0.           D21         4.16         D22         4.16         0.           D22         4.16         D23         4.16         0.	.00%
D17-2_A         4.16         XFD-36A SEC_A         0.208         0.           D18         4.16         D19         4.16         0.           D19         4.16         D20         4.16         0.           D20         4.16         D21         4.16         0.           D21         4.16         D22         4.16         0.           D22         4.16         D23         4.16         0.	.00%
D17-2_A         4.16         XFD-36A SEC_A         0.208         0.           D18         4.16         D19         4.16         0.           D19         4.16         D20         4.16         0.           D20         4.16         D21         4.16         0.           D21         4.16         D22         4.16         0.           D22         4.16         D23         4.16         0.	.00%
D18         4.16         D19         4.16         0.           D19         4.16         D20         4.16         0.           D20         4.16         D21         4.16         0.           D21         4.16         D22         4.16         0.           D22         4.16         D23         4.16         0.	.20%
D19         4.16         D20         4.16         0.           D20         4.16         D21         4.16         0.           D21         4.16         D22         4.16         0.           D22         4.16         D23         4.16         0.	.00%
D20         4.16         D21         4.16         0.           D21         4.16         D22         4.16         0.           D22         4.16         D23         4.16         0.	.00%
D21         4.16         D22         4.16         0.           D22         4.16         D23         4.16         0.	.00%
D22 4.16 D23 4.16 0.	.00%
	.00%
	.00%
D23 4.16 D26 4.16 0.	.00%
	.00%
	.00%
	.00%



Subject:	McMurdo Station Load Flow Study						
Project No.:	6401748177	Calculation No.:	E002	Rev:	0		

From Bus		To Bus		Drop
Name	Base kV	Name	Base kV	%
D39 SEC		D40 SEC	0.208	0.00%
JB	4.16	XFC-8A PRI	4.16	0.00%
JB	4.16	XFC-8C PRI	4.16	0.00%
JB-1A	4.16	SW-1	4.16	0.00%
JB-3	4.16	D-42	4.16	0.00%
JB-3A	4.16	SW-3	4.16	0.00%
JB-4	4.16	JB-3	4.16	0.00%
JB-5	4.16	XFD-36-D1	4.16	0.00%
JB-5	4.16	XFD-36-D2	4.16	0.00%
JB-6B	4.16	SW-6	4.16	0.00%
JB-36D	4.16	D-17-1_A	4.16	0.00%
JB-A2	4.16	XFA-10B-PRI	4.16	0.00%
JB-A2	4.16	XFA-VEOC PRI	4.16	0.00%
JB-C1	4.16	JB	4.16	0.00%
JB-E1	4.16	JB-3A	4.16	-0.10%
JB-E1	4.16	XFE-B PRI	4.16	0.00%
JB-E1	4.16	SWE-01	4.16	0.00%
JB-WP	4.16	SW-6	4.16	0.00%
KIWI	4.16	D-42	4.16	-0.10%
LDB HE COMPRES	0.208	XFD-36A SEC_A	0.208	-0.20%
P-35 SEC	0.208	XFD-35 SEC	0.208	0.00%
P-35 SEC	0.208	POLE-B166	0.208	6.90%
P-A2	4.16	P-A3	4.16	0.10%
P-A2	4.16	SW-2	4.16	0.00%
P-A3	4.16	P-A4	4.16	0.00%
P-A4	4.16	XFA-4 PRI	4.16	0.00%
P-A4	4.16	P-A5	4.16	0.10%
P-A5	4.16	XFA-5-PRI	4.16	0.00%
P-A5	4.16	P-A6	4.16	0.10%
P-A6	4.16	XFA-6-PRI	4.16	0.00%
P-A6	4.16	P-A7	4.16	0.00%
P-A7	4.16	P-A8	4.16	0.00%
P-A8	4.16	P-A9	4.16	0.00%
P-A8	4.16	P-A9_A	4.16	0.00%
P-A8	4.16	P-A10	4.16	0.00%
P-A9	4.16	XFA-9A-PRI	4.16	0.00%
P-A9_A	4.16	XFA-9B-PRI	4.16	0.00%
P-A10	4.16	P-A18	4.16	0.00%
P-	4.16	JB-1A	4.16	-0.10%
P-	4.16	D-38	4.16	0.10%
P-A18	4.16	P-A19	4.16	0.00%
P-A19	4.16	P-A20	4.16	0.00%
P-A19	4.16	XFA-19-PRI	4.16	0.00%
P-A20	4.16	P-A21	4.16	0.00%
P-A20	4.16	P-A22	4.16	0.00%



Subject:	McMurdo Station Load Flow Study					
Project No.:	6401748177	Calculation No.:	E002	Rev:	0	

Name         Base kV         Name         Base kV         %           P-A20-1         0.208         B175         0.208         0.50%           P-A20-1         0.208         A22         0.208         0.50%           P-A22         4.16         P-A23         4.16         0.00%           P-A22         4.16         P-A33         4.16         0.00%           P-A22         4.16         P-A23         4.16         0.00%           P-A24         4.16         P-A24         4.16         0.00%           P-A24         4.16         P-A26         4.16         0.00%           P-A24         4.16         P-A26         4.16         0.00%           P-A25         4.16         XFA-25-PRI         4.16         0.00%           P-A26         HE SOUTH         0.208         0.00%         P-A26         0.208           P-A26         D.208         P-A27         0.208         0.00%         P-A26         0.208         0.20%         P-A29         4.16         0.00%         P-A26         0.208         0.20%         P-A29         4.16         0.00%         P-A30         4.16         0.00%         P-A30         4.16         0.00%         P-A31 (S	From E	Bus	To Bus		Drop
P-A20-1         0.208         A22         0.208         0.90%           P-A22         4.16         P-A23         4.16         0.00%           P-A22         4.16         P-033         4.16         0.00%           P-A22         4.16         P-033         4.16         0.00%           P-A22         4.16         P-A24         4.16         0.00%           P-A24         4.16         P-A25         4.16         0.00%           P-A24         4.16         P-A25         4.16         0.00%           P-A25         4.16         XFA-25-PRI         4.16         0.00%           P-A26         4.16         P-A26         0.00%         P-A26         0.00%           P-A26         4.16         P-A27         0.208         0.00%         P-A26         0.00%           P-A26         4.16         P-A29         4.16         0.00%         P-A29         4.16         0.00%           P-A29         4.16         P-A30         4.16         0.00%         P-A31         4.16         0.00%           P-A30         4.16         P-A30         4.16         0.00%         P-A31         0.208         0.208         0.208         0.208         <	Name	Base kV	Name	Base kV	%
P-A22         4.16         P-A23         4.16         0.00%           P-A22         4.16         P-38         4.16         0.00%           P-A23         4.16         P-033         4.16         0.00%           P-A23         4.16         P-A24         4.16         0.00%           P-A24         4.16         P-A24         4.16         0.00%           P-A24         4.16         P-A26         4.16         0.00%           P-A24         4.16         P-A26         4.16         0.00%           P-A25         4.16         XFA-25A-PRI         4.16         0.00%           P-A26         4.16         P-A28         4.16         0.00%           P-A26         4.16         P-A28         4.16         0.00%           P-A26         4.16         P-A29         4.16         0.00%           P-A29         4.16         P-A30         4.16         0.00%           P-A30         4.16         P-A30         4.16         0.00%           P-A31 (SEC)         0.208         P-A31 SEC WEST         0.208         0.20%           P-A31 (SEC)         0.208         P-A26 SEC         0.208         0.10%           P-B1	P-A20-1	0.208	B175	0.208	0.50%
P-A22         4.16         D-38         4.16         0.00%           P-A22         4.16         P-D33         4.16         0.00%           P-A23         4.16         P-A24         4.16         0.00%           P-A24         4.16         P-A25         4.16         0.00%           P-A24         4.16         P-A25         4.16         0.00%           P-A25         4.16         KA-25A-PRI         4.16         0.00%           P-A25         4.16         KA-25A-PRI         4.16         0.00%           P-A26         4.16         P-A28         4.16         0.00%           P-A26         SEC         0.208         P-A27         0.208         0.20%           P-A28         4.16         P-A29         4.16         0.00%           P-A29         4.16         P-A30         4.16         0.00%           P-A30         4.16         P-A30         4.16         0.00%           P-A30         4.16         A-16         0.00%         P-A30         4.16         0.00%           P-A31 (SEC)         0.208         P-A31 SEC WEST         0.208         0.20%         P-A32         4.16         P-A33         4.16         0.00%	P-A20-1	0.208	A22	0.208	0.90%
P.A22.         4.16         P-033         4.16         0.00%           P.A23         4.16         P.A24         4.16         0.00%           P.A24         4.16         P.A25         4.16         0.00%           P.A24         4.16         P.A25         4.16         0.00%           P.A25         4.16         KFA-25A-PRI         4.16         0.00%           P.A25         4.16         KFA-25-PRI         4.16         0.00%           P.A25         4.16         F.A28         4.16         0.00%           P.A26         SEC         0.208         P.A27         0.208         0.20%           P.A26         SEC         0.208         P.A27         0.208         0.00%           P.A26         SEC         0.208         P.A29         4.16         0.00%           P.A30         4.16         P.A30         4.16         0.00%           P.A30         4.16         A31         4.16         0.00%           P.A30         4.16         P.A31         SEC         0.208         0.30%           P.A31 (SEC)         0.208         P.A30-SEC         0.208         0.20%         0.20%           P.A31 (SEC)         0.208	P-A22	4.16	P-A23	4.16	0.00%
P.A23         4.16         P.A24         4.16         0.00%           P.A24         4.16         P.A25         4.16         0.00%           P.A24         4.16         P.A25         4.16         0.00%           P.A25         4.16         XFA-25-PRI         4.16         0.00%           P.A25         4.16         XFA-25-PRI         4.16         0.00%           P.A26         4.16         P.A25         0.208         P.A26         0.208           P.A26         0.208         P.A27         0.208         0.20%           P.A26         SEC         0.208         P.A26         0.00%           P.A26         4.16         P.A29         4.16         0.00%           P.A29         4.16         P.A30         4.16         0.00%           P.A30         4.16         A-31         4.16         0.00%           P.A31 (SEC)         0.208         P.A31 SEC WEST         0.208         0.00%           P.A31 (SEC)         0.208         P.A33         4.16         0.00%           P.A31 (SEC)         0.208         P.A33         4.16         0.00%           P.A32         4.16         XFA-32-PRI         4.16         0.00%	P-A22 -	4.16	D-38	4.16	0.00%
P.A24         4.16         P.A25         4.16         0.00%           P.A24         4.16         P.A26         4.16         0.00%           P.A25         4.16         XFA-25A-PRI         4.16         0.00%           P.A25         4.16         XFA-25A-PRI         4.16         0.00%           P.A26         4.16         P.A28         4.16         0.00%           P.A26         4.16         P.A28         4.16         0.00%           P.A26         0.208         P.A27         0.208         0.20%           P.A28         4.16         P.A29         4.16         0.00%           P.A29         4.16         P.A30         4.16         0.00%           P.A30         4.16         P.A30         4.16         0.00%           P.A31 (SEC)         0.208         P.A31 SEC WEST         0.208         0.30%           P.A31 (SEC)         0.208         P.A32 SEC         0.208         0.10%           P.A32         4.16         XFA-32-PRI         4.16         0.00%           P.A32         4.16         XFA-32-PRI         4.16         0.00%           P.A32         4.16         JFA-33         4.16         0.00%	P-A22.	4.16	P-D33	4.16	0.00%
P-A24         4.16         P-A26         4.16         0.00%           P-A25         4.16         XFA-25A-PRI         4.16         0.00%           P-A25         4.16         XFA-25-PRI         4.16         0.00%           P-A26         4.16         P-A28         4.16         0.00%           P-A26 SEC         0.208         P-A27         0.208         0.20%           P-A26 SEC         0.208         P-A26 LITE SOUTH         0.208         0.00%           P-A28         4.16         P-A29         4.16         0.00%           P-A29         4.16         P-A30         4.16         0.00%           P-A30         4.16         A-31         4.16         0.00%           P-A30         4.16         A-31         4.16         0.00%           P-A30         4.16         A-31         4.16         0.00%           P-A31 (SEC)         0.208         P-A31 SEC WEST         0.208         0.208           P-A31 (SEC)         0.208         P-A32-PRI         4.16         0.00%           P-A32         4.16         P-A33         4.16         0.00%           P-B1         0.208         B7         0.208         0.00% <tr< td=""><td>P-A23</td><td>4.16</td><td>P-A24</td><td>4.16</td><td>0.00%</td></tr<>	P-A23	4.16	P-A24	4.16	0.00%
P.A25         4.16         XFA-25A-PRI         4.16         0.00%           P.A25         4.16         XFA-25-PRI         4.16         0.00%           P.A26         4.16         P.A28         4.16         0.00%           P.A26 SEC         0.208         P.A27         0.208         0.20%           P.A26 SEC         0.208         P.A26 LITE SOUTH         0.208         0.00%           P.A28         4.16         P.A29         4.16         0.00%           P.A29         4.16         P.A30         4.16         0.00%           P.A30         4.16         A-31         4.16         0.00%           P.A30         4.16         A-31         4.16         0.00%           P.A31 (SEC)         0.208         P.A31 SEC WEST         0.208         0.20%           P.A31 SEC WEST         0.208         P.A26 SEC         0.208         0.10%           P.A32         4.16         P.A33         4.16         0.00%           P.A32         4.16         P.A33         4.16         0.00%           P.A32         4.16         P.A33         4.16         0.00%           P.B3         0.208         P.0208         0.00%	P-A24	4.16	P-A25	4.16	0.00%
P.A25         4.16         XFA-25-PRI         4.16         0.00%           P.A26         4.16         P.A28         4.16         0.00%           P.A26 SEC         0.208         P.A27         0.208         0.20%           P.A26 SEC         0.208         P.A26 LITE SOUTH         0.208         0.00%           P.A28         4.16         P.A29         4.16         0.00%           P.A29         4.16         P.A30         4.16         0.00%           P.A30         4.16         A-31         4.16         0.00%           P.A30         4.16         A-31         4.16         0.00%           P.A30         4.16         A-31         4.16         0.00%           P.A31 SEC         0.208         P.A31 SEC WEST         0.208         0.20%           P.A31 SEC WEST         0.208         P.A26 SEC         0.208         0.00%           P.A32         4.16         XFA-32-PRI         4.16         0.00%           P.A32         4.16         XFA-32-PRI         4.16         0.00%           P.B1         0.208         B10         0.208         0.00%           P.B1         0.208         P.82         0.208         0.10%	P-A24	4.16	P-A26	4.16	0.00%
P-A26         4.16         P-A28         4.16         0.00%           P-A26 SEC         0.208         P-A27         0.208         0.20%           P-A26 SEC         0.208         P-A26 LITE SOUTH         0.208         0.00%           P-A28         4.16         P-A29         4.16         0.00%           P-A29         4.16         P-A30         4.16         0.00%           P-A30         4.16         A-31         4.16         0.00%           P-A30         4.16         A-31         4.16         0.00%           P-A30         4.16         A-31         4.16         0.00%           P-A31 (SEC)         0.208         P-A31 SEC WEST         0.208         0.20%           P-A31 (SEC)         0.208         P-A30-SEC         0.208         0.10%           P-A32         4.16         P-A33         4.16         0.00%           P-A32         4.16         P-A33         4.16         0.00%           P-B1         0.208         B10         0.208         0.00%           P-B1         0.208         P-B2         4.16         0.00%           P-B2         4.16         P-B3         4.16         0.00% <t< td=""><td>P-A25</td><td>4.16</td><td>XFA-25A-PRI</td><td>4.16</td><td>0.00%</td></t<>	P-A25	4.16	XFA-25A-PRI	4.16	0.00%
P-A26 SEC         0.208         P-A27         0.208         0.20%           P-A26 SEC         0.208         P-A26 LITE SOUTH         0.208         0.00%           P-A28         4.16         P-A29         4.16         0.00%           P-A29         4.16         P-A30         4.16         0.00%           P-A30         4.16         A-31         4.16         0.00%           P-A31 (SEC)         0.208         P-A31 SEC WEST         0.208         0.20%           P-A31 SEC WEST         0.208         P-A30-SEC         0.208         0.00%           P-A32         4.16         P-A33         4.16         0.00%           P-A32         4.16         P-A33         4.16         0.00%           P-B1         0.208         B7         0.208         0.10%           P-B1         0.208         P-B2         4.16         0.00%           P-B3         4.16         P-B3         4.16         0.00%           <	P-A25	4.16	XFA-25-PRI	4.16	0.00%
P-A26 SEC         0.208         P-A26 LITE SOUTH         0.208         0.00%           P-A28         4.16         P-A29         4.16         0.00%           P-A29         4.16         P-A30         4.16         0.00%           P-A30         4.16         A-31         4.16         0.00%           P-A31 (SEC)         0.208         P-A31 SEC WEST         0.208         0.20%           P-A31 SEC WEST         0.208         P-A30-SEC         0.208         0.10%           P-A32         4.16         P-A33         4.16         0.00%           P-A32         4.16         XFA-32-PRI         4.16         0.00%           P-B1         0.208         B10         0.208         0.00%           P-B1         0.208         B7         0.208         0.10%           P-B2         4.16         P-B2         4.16         0.00%           P-B3         4.16         P-B2         4.16         0.00%	P-A26	4.16	P-A28	4.16	0.00%
P-A28         4.16         P-A29         4.16         0.00%           P-A29         4.16         P-A30         4.16         0.00%           P-A30         4.16         A-31         4.16         0.00%           P-A30         4.16         A-31         4.16         0.00%           P-A30-SEC         0.208         B344         0.208         0.30%           P-A31 (SEC)         0.208         P-A31 SEC WEST         0.208         0.20%           P-A31 SEC         0.208         P-A30-SEC         0.208         0.00%           P-A31 SEC WEST         0.208         P-A26 SEC         0.208         0.10%           P-A32         4.16         P-A33         4.16         0.00%           P-A32         4.16         JB-1A         4.16         0.00%           P-B1         0.208         B10         0.208         0.00%           P-B1         0.208         P-B2         0.208         0.10%           P-B2         4.16         P-B2         4.16         0.00%           P-B3         4.16         P-B2         4.16         0.00%           P-B3         4.16         P-B2         4.16         0.00%           P-B3<	P-A26 SEC	0.208	P-A27	0.208	0.20%
P-A29         4.16         P-A30         4.16         0.00%           P-A30         4.16         A-31         4.16         0.00%           P-A30-SEC         0.208         B344         0.208         0.30%           P-A31 (SEC)         0.208         P-A31 SEC WEST         0.208         0.20%           P-A31 (SEC)         0.208         P-A30-SEC         0.208         0.00%           P-A31 SEC WEST         0.208         P-A30-SEC         0.208         0.10%           P-A31 SEC WEST         0.208         P-A30-SEC         0.208         0.10%           P-A32         4.16         P-A33         4.16         0.00%           P-B1         0.208         P-A32         4.16         0.00%           P-B1         0.208         B10         0.208         0.00%           P-B1         0.208         P-B2         0.208         0.10%           P-B2         4.16         P-B3         4.16         0.00%           P-B3         4.16         P-B2         4.16         0.00%           P-B3         4.16         P-B3         4.16         0.00%           P-B4         4.16         P-B3         4.16         0.00%	P-A26 SEC	0.208	P-A26 LITE SOUTH	0.208	0.00%
P-A30         4.16         A-31         4.16         0.00%           P-A30-SEC         0.208         B344         0.208         0.30%           P-A31 (SEC)         0.208         P-A31 SEC WEST         0.208         0.20%           P-A31 (SEC)         0.208         P-A30-SEC         0.208         0.00%           P-A31 SEC WEST         0.208         P-A30-SEC         0.208         0.10%           P-A31 SEC WEST         0.208         P-A30-SEC         0.208         0.10%           P-A32         4.16         P-A33         4.16         0.00%           P-B         4.16         JB-1A         4.16         0.00%           P-B1         0.208         B10         0.208         0.00%           P-B1         0.208         P-B2         0.208         0.10%           P-B2         4.16         P-B2         0.208         0.10%           P-B3         4.16         P-B2         0.208         0.10%           P-B3         4.16         P-B2         4.16         0.00%           P-B3         4.16         P-B3         4.16         0.00%           P-B3         4.16         P-B3         4.16         0.00%	P-A28	4.16	P-A29	4.16	0.00%
P-A30-SEC         0.208         B344         0.208         0.30%           P-A31 (SEC)         0.208         P-A31 SEC WEST         0.208         0.20%           P-A31 (SEC)         0.208         P-A30-SEC         0.208         0.10%           P-A31 SEC WEST         0.208         P-A30-SEC         0.208         0.10%           P-A32         4.16         P-A33         4.16         0.00%           P-A32         4.16         JB-1A         4.16         0.00%           P-B         4.16         JB-1A         4.16         0.00%           P-B1         0.208         B10         0.208         0.10%           P-B1         0.208         B7         0.208         0.10%           P-B1         0.208         P-B2         0.208         0.10%           P-B2         4.16         P-B2         0.208         0.10%           P-B3         4.16         P-B2         4.16         0.00%           P-B3         4.16         P-B2         4.16         0.00%           P-B3         4.16         P-B3         4.16         0.00%           P-B4         4.16         P-B3         4.16         0.00%           P-B5 <td>P-A29</td> <td>4.16</td> <td>P-A30</td> <td>4.16</td> <td>0.00%</td>	P-A29	4.16	P-A30	4.16	0.00%
P-A31 (SEC)         0.208         P-A31 SEC WEST         0.208         0.209           P-A31 (SEC)         0.208         P-A30-SEC         0.208         0.00%           P-A31 SEC WEST         0.208         P-A30-SEC         0.208         0.10%           P-A31 SEC WEST         0.208         P-A26 SEC         0.208         0.10%           P-A32         4.16         P-A33         4.16         0.00%           P-A32         4.16         XFA-32-PRI         4.16         0.00%           P-B1         0.208         B10         0.208         0.00%           P-B1         0.208         B10         0.208         0.10%           P-B1         0.208         P-B2         0.208         0.10%           P-B1         0.208         P-B2         0.208         0.10%           P-B2         4.16         P-B         4.16         0.00%           P-B3         4.16         P-B2         4.16         0.00%           P-B3         4.16         P-B2         4.16         0.00%           P-B3         4.16         P-B3         4.16         0.00%           P-B4         4.16         P-B3         4.16         0.00%	P-A30	4.16	A-31	4.16	0.00%
P-A31 (SEC)         0.208         P-A30-SEC         0.208         0.00%           P-A31 SEC WEST         0.208         P-A26 SEC         0.208         0.10%           P-A32         4.16         P-A33         4.16         0.00%           P-A32         4.16         XFA-32-PRI         4.16         0.00%           P-B         4.16         JB-1A         4.16         0.00%           P-B         4.16         JB-1A         4.16         0.00%           P-B         4.16         JB-1A         4.16         0.00%           P-B         0.208         B10         0.208         0.00%           P-B1         0.208         P.7         0.208         0.10%           P-B2         4.16         P-B2         0.10%         P-B2         0.10%           P-B3         4.16         P-B2         4.16         0.00%         P-B3         0.208         0.00%           P-B3         4.16         P-B3         4.16         0.00%         P-B4         4.16         0.00%           P-B4         4.16         P-B3         4.16         0.00%         P-B4         4.16         0.00%           P-B5         4.16         P-B4         4	P-A30-SEC	0.208	B344	0.208	0.30%
P-A31 SEC WEST         0.208         P-A26 SEC         0.208         0.10%           P-A32         4.16         P-A33         4.16         0.00%           P-A32         4.16         XFA-32-PRI         4.16         0.00%           P-B         4.16         JB-1A         4.16         0.00%           P-B         4.16         JB-1A         4.16         0.00%           P-B1         0.208         B10         0.208         0.00%           P-B1         0.208         B7         0.208         0.10%           P-B1         0.208         P-B2         0.208         0.10%           P-B2         4.16         P-B         4.16         0.00%           P-B3         4.16         P-B         4.16         0.00%           P-B3         4.16         P-B2         4.16         0.00%           P-B3         4.16         P-B3         0.208         0.20%           P-B4         4.16         P-B3         4.16         0.00%           P-B5         4.16         P-B3         4.16         0.00%           P-B5         4.16         P-B3         4.16         0.00%           P-B5         4.16         P	P-A31 (SEC)	0.208	P-A31 SEC WEST	0.208	0.20%
P-A32         4.16         P-A33         4.16         0.00%           P-A32         4.16         XFA-32-PRI         4.16         0.00%           P-B         4.16         JB-1A         4.16         0.00%           P-B1         0.208         B10         0.208         0.00%           P-B1         0.208         B7         0.208         0.10%           P-B1         0.208         P-B2         0.208         0.10%           P-B2         4.16         P-B         4.16         0.00%           P-B3         4.16         P-B         4.16         0.00%           P-B3         4.16         P-B         4.16         0.00%           P-B3         4.16         P-B2         4.16         0.00%           P-B3         4.16         P-B2         4.16         0.00%           P-B3         4.16         P-B2         0.208         0.00%           P-B3         4.16         P-B3         4.16         0.00%           P-B4         4.16         P-B3         4.16         0.00%           P-B5         4.16         P-B4         4.16         0.00%           P-B5         4.16         P-B3         <	P-A31 (SEC)	0.208	P-A30-SEC	0.208	0.00%
P-A32         4.16         XFA-32-PRI         4.16         0.00%           P-B         4.16         JB-1A         4.16         0.00%           P-B1         0.208         B10         0.208         0.00%           P-B1         0.208         B7         0.208         0.10%           P-B1         0.208         P-82         0.208         0.10%           P-B2         4.16         P-8         4.16         0.00%           P-B3         4.16         P-82         4.16         0.00%           P-B3         4.16         P-82         4.16         0.00%           P-B3         4.16         P-82         4.16         0.00%           P-83         4.16         P-82         4.16         0.00%           P-83         4.16         P-82         4.16         0.00%           P-84         4.16         P-83         4.16         0.00%           P-85         4.16         P-83         4.16         0.00%           P-85         4.16         P-85         4.16         0.00%           P-85         0.208         B4-THEATER         0.208         0.10%           P-85         4.16         P-85	P-A31 SEC WEST	0.208	P-A26 SEC	0.208	0.10%
P-8         4.16         JB-1A         4.16         0.00%           P-B1         0.208         B10         0.208         0.00%           P-B1         0.208         B7         0.208         0.10%           P-B1         0.208         P-82         0.208         0.10%           P-B2         4.16         P-8         4.16         0.00%           P-B3         4.16         P-82         4.16         0.00%           P-B3         4.16         P-82         4.16         0.00%           P-83         4.16         P-82         4.16         0.00%           P-83         4.16         P-82         4.16         0.00%           P-83-SEC         0.208         P-85-SEC         0.208         0.20%           P-84         4.16         P-83         4.16         0.00%           P-85         4.16         P-84         4.16         0.00%           P-85         0.208         B4-LOUNGE         0.208         0.10%           P-85         4.16         P-85         4.16         0.00%           P-86         4.16         P-85         4.16         0.00%           P-89         4.16         P-89	P-A32	4.16	P-A33	4.16	0.00%
P-8         4.16         JB-1A         4.16         0.00%           P-B1         0.208         B10         0.208         0.00%           P-B1         0.208         B7         0.208         0.10%           P-B1         0.208         P-82         0.208         0.10%           P-B2         4.16         P-8         4.16         0.00%           P-B3         4.16         P-82         4.16         0.00%           P-B3         4.16         P-82         4.16         0.00%           P-83         4.16         P-82         4.16         0.00%           P-83         4.16         P-82         4.16         0.00%           P-83-SEC         0.208         P-85-SEC         0.208         0.20%           P-84         4.16         P-83         4.16         0.00%           P-85         4.16         P-84         4.16         0.00%           P-85         0.208         B4-LOUNGE         0.208         0.10%           P-85         4.16         P-85         4.16         0.00%           P-86         4.16         P-85         4.16         0.00%           P-89         4.16         P-89	P-A32	4.16	XFA-32-PRI	4.16	0.00%
P-B1         0.208         B7         0.208         0.10%           P-B1         0.208         P-B82         0.208         0.10%           P-B2         4.16         P-B         4.16         0.00%           P-B3         4.16         P-B2         4.16         0.00%           P-B3         4.16         P-B2         4.16         0.00%           P-B3         4.16         P-B2         4.16         0.00%           P-B3-SEC         0.208         P-B1         0.208         0.20%           P-B4         4.16         P-B3         4.16         0.00%           P-B5         4.16         P-B3         4.16         0.00%           P-B5         4.16         P-B4         4.16         0.00%           P-B5         4.16         P-B5         4.16         0.00%           P-B6         4.16         P-B5         4.16         0.00%           P-B10         4.16         P-B1 <t< td=""><td>P-B</td><td>4.16</td><td>JB-1A</td><td></td><td>0.00%</td></t<>	P-B	4.16	JB-1A		0.00%
P-B1         0.208         P-882         0.208         0.10%           P-B2         4.16         P-8         4.16         0.00%           P-B3         4.16         P-82         4.16         0.00%           P-B3         4.16         P-82         4.16         0.00%           P-B3         4.16         P-82         4.16         0.00%           P-B3-SEC         0.208         P-81         0.208         0.00%           P-B4         4.16         P-83         4.16         0.00%           P-85         4.16         P-83         4.16         0.00%           P-85         4.16         P-84         4.16         0.00%           P-85         4.16         P-84         4.16         0.00%           P-85         4.16         P-84         4.16         0.00%           P-85         0.208         B4-THEATER         0.208         0.10%           P-86         4.16         P-85         4.16         0.00%           P-88         4.16         P-86         4.16         0.00%           P-810         4.16         P-89         4.16         0.00%           P-811         4.16         P-810	P-81	0.208	B10	0.208	0.00%
P-B2         4.16         P-8         4.16         0.00%           P-B3         4.16         P-82         4.16         0.00%           P-B3-SEC         0.208         P-81         0.208         0.00%           P-B3-SEC         0.208         P-81         0.208         0.00%           P-B3-SEC         0.208         P-85-SEC         0.208         0.20%           P-84         4.16         P-83         4.16         0.00%           P-85         4.16         P-83         4.16         0.00%           P-85         4.16         P-84         4.16         0.00%           P-85         4.16         P-84         4.16         0.00%           P-85         4.16         P-84         4.16         0.00%           P-85         0.208         B4-LOUNGE         0.208         0.10%           P-85         0.208         B4-THEATER         0.208         0.10%           P-86         4.16         P-85         4.16         0.00%           P-89         4.16         P-86         4.16         0.00%           P-810         4.16         P-89         4.16         0.00%           P-811         4.16	P-81	0.208	B7	0.208	0.10%
P-B3         4.16         P-B2         4.16         0.00%           P-B3-SEC         0.208         P-B1         0.208         0.00%           P-B3-SEC         0.208         P-B5-SEC         0.208         0.20%           P-B4         4.16         P-B3         4.16         0.00%           P-B5         4.16         P-B3         4.16         0.00%           P-B5         4.16         P-B4         4.16         0.00%           P-B5         4.16         P-B5         4.16         0.00%           P-B6         4.16         P-B5         4.16         0.00%           P-B7         4.16         P-B8         4.16         0.00%           P-B9         4.16         P-B9         4.16         0.00%           P-B10         4.16         P-B10         4.16         0.00%           P-B13         4.16         P-B13	P-81	0.208	P-B82	0.208	0.10%
P-B3-SEC         0.208         P-B1         0.208         0.00%           P-B3-SEC         0.208         P-B5-SEC         0.208         0.20%           P-B4         4.16         P-B3         4.16         0.00%           P-B5         4.16         P-B3         4.16         0.00%           P-B5         4.16         P-B4         4.16         0.00%           P-B5         4.16         P-B4         4.16         0.00%           P-B5-SEC         0.208         B4-LOUNGE         0.208         0.10%           P-B6         4.16         P-B5         4.16         0.00%           P-B6         4.16         P-B5         4.16         0.00%           P-B6         4.16         P-B5         4.16         0.00%           P-B7         4.16         P-B7         4.16         0.00%           P-B9         4.16         P-B8         4.16         0.00%           P-B10         4.16         P-B9         4.16         0.00%           P-B11         4.16         P-B10         4.16         0.00%           P-B13         4.16         P-B13         4.16         0.00%           P-B15         4.16	P-B2	4.16	P-B	4.16	0.00%
P-B3-SEC         0.208         P-B5-SEC         0.208         0.20%           P-B4         4.16         P-B3         4.16         0.00%           P-B5         4.16         P-B3         4.16         0.00%           P-B5         4.16         P-B4         4.16         0.00%           P-B5         4.16         P-B4         4.16         0.00%           P-B5-SEC         0.208         B4-LOUNGE         0.208         0.10%           P-B6         4.16         P-B5         4.16         0.00%           P-B6         4.16         P-B5         4.16         0.00%           P-B8         4.16         P-B5         4.16         0.00%           P-B9         4.16         P-B8         4.16         0.00%           P-B10         4.16         P-B9         4.16         0.00%           P-B11         4.16         P-B10         4.16         0.00%           P-B12         4.16         P-B12         4.16         0.00%           P-B13         4.16         P-B13         4.16         0.00%           P-B15         4.16         P-B14         4.16         0.00%           P-B15         4.16 <t< td=""><td>P-83</td><td>4.16</td><td>P-B2</td><td>4.16</td><td>0.00%</td></t<>	P-83	4.16	P-B2	4.16	0.00%
P-B4         4.16         P-B3         4.16         0.00%           P-B5         4.16         P-B4         4.16         0.00%           P-B5         0.208         B4-LOUNGE         0.208         0.10%           P-B5-SEC         0.208         B4-THEATER         0.208         0.10%           P-B6         4.16         P-B5         4.16         0.00%           P-B6         4.16         P-B5         4.16         0.00%           P-B8         4.16         P-B5         4.16         0.00%           P-B9         4.16         P-B8         4.16         0.00%           P-B10         4.16         P-B9         4.16         0.00%           P-B11         4.16         P-B10         4.16         0.00%           P-B12         4.16         P-B11         4.16         0.00%           P-B13         4.16         P-B12         4.16         0.00%           P-B14         4.16         P-B13         4.16         0.00%           P-B15         4.16         P-B10         4.16         0.00%           P-B16         4.16         P-B10         4.16         0.00%           P-B17         4.16	P-B3-SEC	0.208	P-B1	0.208	0.00%
P-B5         4.16         P-B4         4.16         0.00%           P-B5-SEC         0.208         B4-LOUNGE         0.208         0.10%           P-B5-SEC         0.208         B4-THEATER         0.208         0.10%           P-B6         4.16         P-B5         4.16         0.00%           P-B6         4.16         P-B5         4.16         0.00%           P-B9         4.16         P-B6         4.16         0.00%           P-B10         4.16         P-B9         4.16         0.00%           P-B11         4.16         P-B10         4.16         0.00%           P-B12         4.16         P-B11         4.16         0.00%           P-B13         4.16         P-B12         4.16         0.00%           P-B13         4.16         P-B13         4.16         0.00%           P-B15         4.16         P-B13         4.16         0.00%           P-B15         4.16         P-B10         4.16         0.00%           P-B16         4.16         P-B10         4.16         0.00%           P-B17         4.16         P-B10         4.16         0.00%           P-B20         4.16	P-B3-SEC	0.208	P-B5-SEC	0.208	0.20%
P-B5-SEC         0.208         B4-LOUNGE         0.208         0.10%           P-B5-SEC         0.208         B4-THEATER         0.208         0.10%           P-B6         4.16         P-B5         4.16         0.00%           P-B8         4.16         P-B6         4.16         0.00%           P-B9         4.16         P-B6         4.16         0.00%           P-B10         4.16         P-B9         4.16         0.00%           P-B11         4.16         P-B9         4.16         0.00%           P-B12         4.16         P-B10         4.16         0.00%           P-B13         4.16         P-B12         4.16         0.00%           P-B13         4.16         P-B13         4.16         0.00%           P-B15         4.16         P-B13         4.16         0.00%           P-B15         4.16         P-B13         4.16         0.00%           P-B15         4.16         P-B10         4.16         0.00%           P-B16         4.16         P-B10         4.16         0.00%           P-B17         4.16         P-B10         4.16         0.00%           P-B20         4.16	P-84	4.16	P-B3	4.16	0.00%
P-B5-SEC         0.208         B4-THEATER         0.208         0.10%           P-B6         4.16         P-B5         4.16         0.00%           P-B8         4.16         P-B5         4.16         0.00%           P-B9         4.16         P-B8         4.16         0.00%           P-B10         4.16         P-B9         4.16         0.00%           P-B11         4.16         P-B10         4.16         0.00%           P-B12         4.16         P-B10         4.16         0.00%           P-B13         4.16         P-B12         4.16         0.00%           P-B14         4.16         P-B13         4.16         0.00%           P-B15         4.16         P-B14         4.16         0.00%           P-B16         4.16         P-B10         4.16         0.00%           P-B17         4.16         P-B10         4.16         0.00%           P-B20         4.16         P-B10         4.16         0.00%	P-85	4.16	P-84	4.16	0.00%
P-B5-SEC         0.208         B4-THEATER         0.208         0.10%           P-B6         4.16         P-B5         4.16         0.00%           P-B8         4.16         P-B5         4.16         0.00%           P-B9         4.16         P-B8         4.16         0.00%           P-B10         4.16         P-B9         4.16         0.00%           P-B11         4.16         P-B10         4.16         0.00%           P-B12         4.16         P-B10         4.16         0.00%           P-B13         4.16         P-B12         4.16         0.00%           P-B14         4.16         P-B13         4.16         0.00%           P-B15         4.16         P-B14         4.16         0.00%           P-B16         4.16         P-B10         4.16         0.00%           P-B17         4.16         P-B10         4.16         0.00%           P-B20         4.16         P-B10         4.16         0.00%	P-B5-SEC	0.208	B4-LOUNGE	0.208	0.10%
P-86         4.16         P-85         4.16         0.00%           P-88         4.16         P-86         4.16         0.00%           P-89         4.16         P-88         4.16         0.00%           P-810         4.16         P-89         4.16         0.00%           P-810         4.16         P-89         4.16         0.00%           P-811         4.16         P-810         4.16         0.00%           P-812         4.16         P-811         4.16         0.00%           P-813         4.16         P-812         4.16         0.00%           P-814         4.16         P-813         4.16         0.00%           P-815         4.16         P-814         4.16         0.00%           P-816         4.16         P-810         4.16         0.00%           P-817         4.16         P-816         4.16         0.00%           P-820         4.16         P-810         4.16         0.00%					
P-B8         4.16         P-B6         4.16         0.00%           P-B9         4.16         P-B8         4.16         0.00%           P-B10         4.16         P-B9         4.16         0.00%           P-B11         4.16         P-B9         4.16         0.00%           P-B12         4.16         P-B11         4.16         0.00%           P-B13         4.16         P-B12         4.16         0.00%           P-B13         4.16         P-B12         4.16         0.00%           P-B13         4.16         P-B13         4.16         0.00%           P-B14         4.16         P-B13         4.16         0.00%           P-B15         4.16         P-B14         4.16         0.00%           P-B16         4.16         P-B10         4.16         0.00%           P-B17         4.16         P-B10         4.16         0.00%           P-B20         4.16         P-B10         4.16         0.00%					
P-B9         4.16         P-88         4.16         0.00%           P-B10         4.16         P-89         4.16         0.00%           P-B11         4.16         P-810         4.16         0.00%           P-B12         4.16         P-811         4.16         0.00%           P-B13         4.16         P-812         4.16         0.00%           P-B13         4.16         P-812         4.16         0.00%           P-B14         4.16         P-813         4.16         0.00%           P-B15         4.16         P-813         4.16         0.00%           P-B16         4.16         P-810         4.16         0.00%           P-B17         4.16         P-810         4.16         0.00%           P-820         4.16         P-810         4.16         0.00%	P-88	4.16	P-B6		
P-B10         4.16         P-B9         4.16         0.00%           P-B11         4.16         P-B10         4.16         0.00%           P-B12         4.16         P-B11         4.16         0.00%           P-B13         4.16         P-B12         4.16         0.00%           P-B14         4.16         P-B13         4.16         0.00%           P-B15         4.16         P-B14         4.16         0.00%           P-B16         4.16         P-B10         4.16         0.00%           P-B17         4.16         P-B10         4.16         0.00%           P-B20         4.16         P-B10         4.16         0.00%	P-89				
P-B11         4.16         P-B10         4.16         0.00%           P-B12         4.16         P-B11         4.16         0.00%           P-B13         4.16         P-B12         4.16         0.00%           P-B14         4.16         P-B13         4.16         0.00%           P-B15         4.16         P-B14         4.16         0.00%           P-B16         4.16         P-B10         4.16         0.00%           P-B17         4.16         P-B10         4.16         0.00%           P-B20         4.16         P-B10         4.16         0.00%	P-B10			4.16	
P-B12         4.16         P-B11         4.16         0.00%           P-B13         4.16         P-B12         4.16         0.00%           P-B14         4.16         P-B13         4.16         0.00%           P-B15         4.16         P-B14         4.16         0.00%           P-B16         4.16         P-B10         4.16         0.00%           P-B17         4.16         P-B10         4.16         0.00%           P-B20         4.16         P-B10         4.16         0.00%	P-B11	4.16	P-B10		
P-B13         4.16         P-B12         4.16         0.00%           P-B14         4.16         P-B13         4.16         0.00%           P-B15         4.16         P-B14         4.16         0.00%           P-B16         4.16         P-B10         4.16         0.00%           P-B17         4.16         P-B16         4.16         0.00%           P-B20         4.16         P-B10         4.16         0.00%					
P-B14         4.16         P-B13         4.16         0.00%           P-B15         4.16         P-B14         4.16         0.00%           P-B16         4.16         P-B10         4.16         0.00%           P-B17         4.16         P-B16         4.16         0.00%           P-B20         4.16         P-B10         4.16         0.00%					
P-B15         4.16         P-B14         4.16         0.00%           P-B16         4.16         P-B10         4.16         0.00%           P-B17         4.16         P-B16         4.16         0.00%           P-B20         4.16         P-B10         4.16         0.00%					
P-B16         4.16         P-B10         4.16         0.00%           P-B17         4.16         P-B16         4.16         0.00%           P-B20         4.16         P-B10         4.16         0.00%					
P-B17         4.16         P-B16         4.16         0.00%           P-B20         4.16         P-B10         4.16         0.00%					
P-B20 4.16 P-B10 4.16 0.00%					
V.6001-002 A 0.200 0.10%	P-B82			0.208	0.10%



Subject:	McMurdo Station Load Flow Study					
Project No.:	6401748177	Calculation No.:	E002	Rev:	0	

From B	us	To Bus	To Bus		
Name	Base kV	Name	Base kV	%	
P-C1	4.16	SW-4	4.16	0.00%	
P-D9	4.16	D10	4.16	0.00%	
P-D33	4.16	P-D37NC	4.16	0.00%	
P-D36	4.16	RWE POWERSTORE	4.16	0.00%	
P-D36	4.16	JB-36D	4.16	0.00%	
P-D36	4.16	JB-5	4.16	0.00%	
P-D37NC	4.16	P-D9	4.16	0.00%	
P-D39	4.16	P-A22 - D COMMON	4.16	0.00%	
P-D40	4.16	P-D39	4.16	0.00%	
POLE 167	0.208	POLE-B166	0.208	-1.10%	
POWER PLANT A	4.16	GEN 5	4.16	0.00%	
POWER PLANT A	4.16	GEN 6	4.16	0.00%	
POWER PLANT A	4.16	GEN-4	4.16	0.00%	
POWER PLANT A	4.16	SW-1	4.16	0.00%	
POWER PLANT A	4.16	BUS-9 C	4.16	0.00%	
POWER PLANT A	4.16	SW-2	4.16	0.00%	
POWER PLANT A	4.16	SW-3	4.16	0.00%	
POWER PLANT A	4.16	SW-4	4.16	0.00%	
POWER PLANT A	4.16	SW-5	4.16	0.00%	
POWER PLANT A	4.16	SW-1	4.16	0.00%	
POWER PLANT A	4.16	SW-2	4.16	0.00%	
POWER PLANT A	4.16	SW-3	4.16	0.00%	
POWER PLANT A		SW-4	4.16	0.00%	
POWER PLANT A	4.16	SW-5	4.16	0.00%	
POWER PLANT A	4.16	SW-6	4.16	0.00%	
PUMP HOUSE PRI	4.16	PUMP HOUSE-SEC	0.48	0.90%	
RWE POWERSTO	4.16	BUS-15	4.16	0.00%	
SCOTT BASE G1	0.4	SCOTT BASE G1	0.4	0.00%	
SCOTT BASE G2	0.4	SCOTT BASE G2	0.4	0.00%	
SW-1	4.16	BUS-3	4.16	0.00%	
SWA-01	4.16	P-A19	4.16	0.00%	
SWA-01	4.16	JB-A2	4.16	0.00%	
SWC-01	4.16	JB-C1	4.16	0.00%	
SWC-01		XFC-B2B5 PRI	4.16	0.20%	
SWC-01	4.16	PUMP HOUSE PRI	4.16	0.00%	
SWE-01		XFE-A PRI	4.16	0.00%	
SWE-01		CORE FREEZER PRI	4.16	0.00%	
T-L (XFE-A)	4.16	LOAD BANKS	0.48	0.00%	
T-L (XFE-A)		SW-5	4.16	0.00%	
T-PH-1		T-PH-1 SEC	0.48	0.20%	
T-PH-1	4.16	JB-6B	4.16	0.00%	
TW-1 PRI		T-W-1 SEC	0.208	0.20%	
TW-1 PRI		JB-WP	4.16	0.00%	
TW-2 PRI		T-W-2 SEC	0.48	0.20%	
TW-2 PRI		JB-WP	4.16	0.00%	
TW-2 PRI_A		T-W-2 SEC_A	0.208	0.20%	



Subject:	McMurdo Station Load Flow Study					
Project No.:	6401748177	Calculation No.:	E002	Rev:	0	

From Bus		To Bus		Drop		
Name	Base kV	Name	Base kV	%		
TW-2 PRI_A	4.16	JB-6B	4.16	0.00%		
WTG-SOURCE-1	0.4	WTG-SOURCE-1	0.4	0.00%		
WTG-1	0.4	WTG-SOURCE-1	0.4	0.00%		
WTG-1_C	0.4	SCOTT BASE G1	0.4	0.00%		
WTG-2	0.4	SCOTT BASE G2	0.4	0.00%		
XFA-4 PRI	4.16	XFA-4 SEC	0.48	0.50%		
XFA-4 SEC	0.48	HTA	0.48	0.00%		
XFA-4 SEC	0.48	HTA_A	0.48	0.00%		
XFA-4 SEC	0.48	HTA_B	0.48	0.00%		
XFA-4 SEC	0.48	HTP6	0.48	0.00%		
XFA-4 SEC	0.48	HTP-5	0.48	0.00%		
XFA-4 SEC	0.48	HTP4	0.48	0.00%		
XFA-5-PRI	4.16	XFA-5-SEC	0.208	0.40%		
XFA-6-PRI	4.16	XFA-6-SEC	0.208	0.00%		
XFA-9A-PRI	4.16	XFA-9-A-SEC	0.208	0.20%		
XFA-9B-PRI	4.16	XFA-9-B-SEC	0.208	0.20%		
XFA-10B-PRI	4.16	XFA-10B-SEC	0.208	0.10%		
XFA-19-PRI	4.16	XFA-19-SEC	0.208	0.10%		
XFA-19-SEC	0.208	P-A20-1	0.208	0.50%		
XFA-25-PRI	4.16	XFA-25-SEC	0.208	0.40%		
XFA-25A-PRI	4.16	XFA-25-A-SEC	0.208	0.10%		
XFA-32-PRI	4.16	XFA-32-SEC	0.208	0.30%		
XFA-32-SEC	0.208	B174	0.208	0.10%		
XFA-32-SEC	0.208	B185	0.208	0.10%		
XFA-32-SEC	0.208	P-A31 (SEC)	0.208	0.10%		
XFA-VEOC PRI	4.16	VEOC	0.48	0.80%		
XFB-3-PRI	4.16	XFB-3-SEC	0.208	0.30%		
XFB-3-PRI	4.16	P-B3	4.16	0.00%		
XFB-3-SEC	0.208	P-B3-SEC	0.208	0.00%		
XFB-11-PRI	4.16	XFB-11 SEC	0.208	0.10%		
XFB-11-PRI	4.16	P-B11	4.16	0.00%		
XFB-12-PRI	4.16	XFB-12 SEC	0.208	0.40%		
XFB-12-PRI	4.16	P-B12	4.16	0.00%		
XFB-15 SEC	0.208	B-15-SEC	0.208	0.30%		
XFB-15-PRI	4.16	XFB-15 SEC	0.208	0.30%		
XFB-15-PRI	4.16	P-B15	4.16	0.00%		
XFB-15A-PRI	4.16	XFB-15A SEC	0.48	0.10%		
XFB-15A-PRI	4.16	P-B15	4.16	0.00%		
XFB-17 SEC	0.208	B-155	0.208	0.10%		
XFB-17-PRI	4.16	XFB-17 SEC	0.208	1.00%		
XFB-17-PRI	4.16	P-B17	4.16	0.00%		
XFB-20 SEC	0.208	B136A	0.208	0.10%		
XFB-20 SEC	0.208	B136C	0.208	0.10%		
XFB-20-PRI	4.16	XFB-20 SEC	0.208	0.00%		



Subject:	McMurdo Station Load Flow Study					
Project No.:	6401748177	Calculation No.:	E002	Rev:	0	

From B	lus	To Bus		Drop
Name	Base kV	Name	Base kV	%
XFB-20-PRI	4.16	P-B20	4.16	0.00%
XFC-8A PRI	4.16	XFC-8B SEC	0.208	0.20%
XFC-8C PRI	4.16	XFC-8C SEC	0.208	0.20%
XFC-B2B5 PRI	4.16	XFC-B2B5-SEC	0.48	0.10%
XFC-B2B5-SEC	0.48	B-3	0.48	0.10%
XFC-B2B5-SEC	0.48	B-5	0.48	0.00%
XFD-17 PRI	4.16	XFD-17 SEC	0.208	0.30%
XFD-17 PRI	4.16	D-17	4.16	0.00%
XFD-17 PRI_B	4.16	XFD-19 SEC	0.208	0.30%
XFD-17 PRI_B	4.16	D18	4.16	0.00%
XFD-17-1 PRI	4.16	XFD-17-1 SEC	0.208	0.30%
XFD-17-1 PRI	4.16	D-17-1	4.16	0.00%
XFD-17-1 PRI_A	4.16	XFD-36A SEC	0.208	0.10%
XFD-17-1 PRI_A	4.16	D-17-1_A	4.16	0.00%
XFD-18 PRI	4.16	XFD-18-SEC	0.208	0.30%
XFD-18 PRI	4.16	D18	4.16	0.00%
XFD-18-SEC	0.208	B341	0.208	0.10%
XFD-19 SEC	0.208	B68	0.208	0.10%
XFD-25 PRI	4.16	XFD-25-SEC	0.208	0.30%
XFD-25 PRI	4.16	D24	4.16	0.00%
XFD-25-SEC	0.208	B191	0.208	0.10%
XFD-35 PRI	4.16	XFD-35 SEC	0.208	0.10%
XFD-35 PRI	4.16	D-35	4.16	0.00%
XFD-36-D1	4.16	B-221	0.208	0.10%
XFD-36-D2	4.16	USAP B70	0.208	0.00%
XFD-42-B PRI	4.16	XFD-42A SEC_A	0.208	0.10%
XFD-42-B PRI	4.16	JB-4	4.16	0.00%
XFD-42A-PRI	4.16	XFD-42A SEC	0.208	0.10%
XFD-42A-PRI	4.16	JB-3	4.16	0.00%
XFD-44	4.16	XFD-44-SEC	0.208	0.00%
XFD-45-PRI	4.16	XFD-45-SEC	0.208	0.00%
XFE-A PRI	4.16	BLDG 10	0.48	0.50%
XFE-B PRI	4.16	XFE-B SEC	0.208	0.60%
XFF-D-PRI	4.16	XFF-D-SEC	0.48	0.20%
XFF-D-PRI	4.16	JB-6B	4.16	0.00%



**Technical Calculations** 

E003-Electrical

# **Calculation Title:**

McMurdo Station Antarctica

Short-Circuit Calculations

July 19, 2017

# Prepared For:

NSF/ASC

# **Prepared By:**

Merrick & Company

5970 Greenwood Plaza Blvd.

Greenwood Village, Co 80111-4703



# TABLE OF CONTENTS

TABLE OF CONTENTS	2
SECTION 1 EXECUTIVE SUMMARY	3
SECTION 3 GENERAL CRITERIA	5
SECTION 4 DESIGN INPUT	6
SECTION 5 METHODOLOGY	7
SECTION 6 REFERENCES	8
SECTION 7 CONCLUSIONS	9
SECTION 8 CALCULATIONS	10

#### SECTION 1 EXECUTIVE SUMMARY

An EasyPower[™] model was created for McMurdo Station for the existing electrical system to analyze existing fault conditions. The electrical system consists of a 4.16kV micro-grid with multiple power generation sources. The system was modeled with three reciprocating generators online assuming this operating scenario will generate the highest fault currents imposed onto the system. It is anticipated that the site will likely not operate more than three units based on the forecasted load.

Tabulated results are provided at the end of this report. Results generally indicate low fault currents in comparison to typical equipment available interrupting ratings (AIC). Equipment verification of existing equipment is outside of this scope; however, there does not appear to be a problem with existing equipment ratings against the available short-circuit currents.

Building 166, B188, and B167 original overhead feeder was removed due to low clearance issues and their power source was relocate from Feeder B to Feeder D. A new 650-ft, #4, 600V cable was installed between pole D-35 and an existing pole located adjacent of B166. Secondary feeders to these buildings are excessive and subject to low service voltage. Low voltage conditions will occur when building occupancy increases during construction causing mechanical system failures. Building fault currents are too low and branch breakers are subject to long time trip delays. Failure to trip a breaker during a fault condition could lead to a building fire if not corrected. Corrective action is required for these facilities.

#### **SECTION 2 INTRODUCTION**

#### CODES, STANDARDS, REFERENCES:

UFC 3-501-01	(6 Oct 2015) Electrical Engineering
--------------	-------------------------------------

- UFC 3-550-01 Exterior Electrical Power Distribution (1 September, 2-16)
- NFPA 70E Standard for Electrical Safety in the Work Place
- NFPA 70 National Electrical Code 2017

IEEE Recommended Practices for Protection and Coordination of Industrial and Commercial Power Systems.

This study assesses the existing fault current associated with McMurdo's existing 4.16kV power generation and distribution system. Fault currents will vary depending on the number of generator running on line. This study will assume that a maximum of three generators will be operating on a single event. Two generators will typically be running under normal condition but the highest fault currents will occur on rare occasions when three are running. Therefore, the calculation will evaluate the worst-case condition and size the equipment accordingly. Reciprocating generators produce higher fault currents than inverter base technologies as used by microturbines and wind turbines. Reciprocating engines will be used for fault calculations in order to calculate the highest fault currents.

AIMS will include a number of construction phases and the fault currents results will vary slightly as feeders are reconfigured. The EasyPower[™] model is configured to evaluate each construction phase to recalculate the fault currents as system modifications occur. The calculated results will provide guidance in properly specifying AIC ratings for each electrical equipment and adjusting overcurrent protective device settings to achieve system protective coordination. Coordination studies will be provided on a separate report.

#### **SECTION 3 GENERAL CRITERIA**

The existing site will remain in operation during all AIMS phased construction. The modeling will be performed based on the following assumption:

- Existing overhead feeders scheduled to remain will be modeled based on as-built data provided that indicates feeder size and distances. Adjustments to the data was made based on Merrick's findings from 2017 Deployment.
- 2. Scott Base and Wind Turbines will not be considered as power generation source into the system model for the purpose of this study. The study will focus on McMurdo feeder fault conditions from the existing power plant with a maximum of three generators in operation which will generate the worst case fault condition.
- Existing building secondary conductors will be evaluated based on existing installed configuration. Conductors distance will be calculated from existing AutoCAD site drawings.
- 4. McMurdo power plant operating output voltage at nominal voltage of 4.16kV (1.0 p.u)
- 5. Merrick was informed by McMurdo Site utilities that existing transformers do not have load tap changers. Therefore, calculations will be based without adjusted tap settings on transformers.
- 6. Transformer impedance data is not available. All calculations will be based on an assumed 5% impedance on transformers.

#### **SECTION 4 DESIGN INPUT**

- 1. Existing feeder conductors sizes, distances, and configuration provided by as-built drawings and field verification results gathered during Merrick's 2017 McMurdo deployment.
- 2. Existing transformers sizes and rated nominal voltage rating.
- 3. Individual transformer impedances are not available; therefore, an assumed input of 5% impedance.
- 4. Generation equipment will be modeled based on on-site data collection and data provided by the owner.
- 5. Individual Generator impedance data will be incorporated into the model with an adjusted KW rating due to fuel source.
- 6. EasyPower[™] Set points:
  - a. Bus under voltage=0.95pu
  - b. Bus over voltage= 1.05pu
  - c. Overload Threshold= -10% of rating
  - d. X/R ANSI Calculation Method
  - e. 3-phase Fault

#### **SECTION 5 METHODOLOGY**

An EasyPower[™] electrical model for McMurdo Station was developed that includes all system components of the existing 5kV distribution system. AIMS construction phasing will impose system modifications where feeder configurations will change the available fault currents at various site locations. Multiple calculations will be conducted and compared to the worst-case scenario to determine if fault currents reach an undesirable level.

The model will provide future support in analyzing future system modifications as construction progresses. The model will be available for further dynamic and stability analysis outside of this scope when system base loading drops below existing conditions or new power generation technology is introduced. Loop feed breakers will be operated and system loading will be analyzed to overall system performance evaluation.

#### **SECTION 6 REFERENCES**

Refer to Section 1 Introduction.

#### **SECTION 7 CONCLUSIONS**

Modifications to the existing overhead system had no significant change in fault currents between the existing and the new proposed feeder modifications. No further action is required in existing electrical equipment to support the new primary installation. AIMS is required to conduct individual fault studies for all new structures based on the service entrance equipment specified.

#### **SECTION 8 CALCULATIONS**

# **HV Momentary Report**

EasyPower 9.8.1.490 07/19/17 19:05:40 C:\...\McM Primary Distribution.dez EasyPower LLC. Comments :

Vpu=1.0

3 PHASE Fa	ult	Tota	al Fault Currents		Fuse Duties	
Bus Name	Bus kV	Sym Amps	Asym Amps	2.6*Sym Amps	Test X/R	Duty Amp
A-31	4.16	3361.5	3430.7	8739.8	5	3361
					8	3361
					12	3361
					15	3361
B18	4.16	4145.6	4529.8	10778.4	5	4145
					8	4145
					12	4145
					15	4145
BUS-1	4.16	4981.5	7932.6	12952	5	6247
					8	5700
					12	5348
					15	5199
BUS-2	4.16	4919.8	7614.6	12791.5	5	5997
					8	547
					12	5134
					15	4991
BUS-3	4.16	4944	7736.4	12854.5	5	6093
					8	5559
					12	5216
					15	5071
BUS-4	4.16	4938.7	7709.6	12840.7	5	6072
					8	5540
					12	5198
					15	5053
BUS-5	4.16	4933.5	7682.9	12827	5	6051
					8	552
					12	5180
					15	5036
BUS-6	4.16	4928.2	7656.5	12813.3	5	6030
					8	550
					12	5162
					15	5018
BUS-7	4.16	0	0	0	5	
					8	
					12	
					15	
BUS-8	4.16	4888.5	7462.6	12710	5	5877
					8	5362
					12	5031
	1.15	1017.5	7700.5	40050.6	15	4891
BUS-9_C	4.16	4947.5	7782.5	12863.6	5	6129
					8	5592
					12	5247 5101
BUS-9_G	4.16	0	0	0	15	5101
603-9_0	4.16	0	0	0		
					8 12	
					12	
BUS-15	4.16	1930.5	1954	5019.2	5	1930
					8	1930
					12	1930
					15	1930

3 PHASE Fau	lt	Tot		Fuse	Duties	
Bus Name	Bus kV	Sym Amps	Asym Amps	2.6*Sym Amps	Test X/R	Duty Amps
BUS-27	4.16	3231.2	3309	8401	5	3231.2
-					8	3231.2
					12	3231.2
-					15	3231.2
CORE FREEZER PRI	4.16	4484.8	5891	11660.5	5	4639.7
					8	4484.8
1					12	4484.8
1					15	4484.8
D-17	4.16	3554.2	3719.4	9241	5	3554.2
1					8	3554.2
					12	3554.2
1					15	3554.2
D-17-1	4.16	3537.5	3696.4	9197.5	5	3537.5
1					8	3537.5
1					12	3537.5
					15	3537.5
D-17-1_A	4.16	3009.9	3067.9	7825.9	5	3009.9
					8	3009.9
					12	3009.9
					15	3009.9
D-29	4.16	3107.3	3165.1	8078.9	5	3107.3
1					8	3107.3
					12	3107.3
					15	3107.3
D-30	4.16	2981.9	3024.4	7753	5	2981.9
					8	2981.9
					12	2981.9
					15	2981.9
D-31	4.16	2915.6	2951.6	7580.7	5	2915.6
					8	2915.6
					12	2915.6
1					15	2915.6
D-33	4.16	2877.5	2910.1	7481.4	5	2877.5
1					8	2877.5
1					12	2877.5
1					15	2877.5
D-34	4.16	2826.2	2854.8	7348.1	5	2826.2
1					8	2826.2
]					12	2826.2
]					15	2826.2
D-35	4.16	2782.5	2808	7234.5	5	2782.5
					8	2782.5
					12	2782.5
					15	2782.5
D-38	4.16	4360.2	5428.4	11336.5	5	4360.2
					8	4360.2
1					12	4360.2
1					15	4360.2

3 PHASE Fault	t	Total Fault Currents			Fuse Duties		
Bus Name	Bus kV	Sym Amps	Asym Amps	2.6*Sym Amps	Test X/R	Duty Amps	
D-41	4.16	4015.5	4467.9	10440.4	5	4015.5	
					8	4015.5	
					12	4015.5	
					15	4015.5	
D-42	4.16	3959.6	4356.6	10294.9	5	3959.6	
					8	3959.6	
					12	3959.6	
					15	3959.6	
D-43	4.16	3901.6	4248.7	10144.1	5	3901.6	
					8	3901.6	
					12	3901.6	
					15	3901.6	
D-44	4.16	3845.7	4151	9998.8	5	3845.7	
					8	3845.7	
					12	3845.7	
					15	3845.7	
D10	4.16	4035.4	4538.5	10492.1	5	4035.4	
					8	4035.4	
					12	4035.4	
					15	4035.4	
D11	4.16	3958.9	4378.6	10293.2	5	3958.9	
					8	3958.9	
					12	3958.9	
					15	3958.9	
D12	4.16	3882.2	4233	10093.7	5	3882.2	
					8	3882.2	
					12	3882.2	
					15	3882.2	
D13	4.16	3794.2	4080.5	9864.9	5	3794.2	
					8	3794.2	
					12	3794.2	
					15	3794.2	
D14	4.16	3716.8	3956.5	9663.7	5	3716.8	
					8	3716.8	
					12	3716.8	
					15	3716.8	
D15	4.16	3653.3	3860.6	9498.6	5	3653.3	
					8	3653.3	
					12	3653.3	
					15	3653.3	
D16	4.16	3602.9	3787.5	9367.5	5	3602.9	
					8	3602.9	
					12	3602.9	
					15	3602.9	
D17-2	4.16	3502.3	3648.8	9105.9	5	3502.3	
					8	3502.3	
					12	3502.3	
					15	3502.3	

D17-2_A	4.16	2007.2	3054.3	7792.9	<b>_</b>	2007.2
017-2_A	4.10	2997.3	5054.5	//92.9	5	2997.3
					8	2997.3
					12	2997.3
					15	2997.3
D18	4.16	3791.5	4076	9857.9	5	3791.5
					8	3791.5
					12	3791.5
					15	3791.5
D19	4.16	3695.6	3923.9	9608.5	5	3695.6
					8	3695.6
					12	3695.6
					15	3695.6
D20	4.16	3610.7	3798.7	9387.9	5	3610.7
					8	3610.7
					12	3610.7
					15	3610.7
D21	4.16	3532.3	3689.4	9184.1	5	3532.3
					8	3532.3
					12	3532.3
					15	3532.3
D22	4.16	3452.8	3583.6	8977.4	5	3452.8
					8	3452.8
					12	3452.8
					15	3452.8
D23	4.16	3380.5	3491.1	8789.4	5	3380.5
					8	3380.5
					12	3380.5
					15	3380.5
D24	4.16	3312.8	3407.2	8613.2	5	3312.8
					8	3312.8
					12	3312.8
					15	3312.8
D26	4.16	3292.3	3382.3	8560	5	3292.3
					8	3292.3
					12	3292.3
					15	3292.3
D28	4.16	3138.2	3200.6	8159.4	5	3138.2
					8	3138.2
					12	3138.2
					15	3138.2
GEN 1	4.16	1538.8	2460.8	4001	5	1938.1
					8	1768.4
					12	1659.2
					15	1613
GEN 2	4.16	1538.8	2460.8	4001	5	1938.1
1					8	1768.4
1					12	1659.2
1					15	1613

GEN 5	4.16	4968.5	7874.6	12918	5	6202.1
					8	5658.8
					12	5309.6
					15	5161.7
GEN 6	4.16	4968.5	7874.6	12918	5	6202.1
GENO	4.10	4505.5	7074.0	12510	8	5658.8
					12	5309.6
					12	5161.7
GEN-4	4.16	4973.6	7897.4	12931.3	5	6220
GEN-4	4.10	4575.0	7657.4	12551.5	8	5675.1
						5325
					12 15	
	4.15	1207.0	2271.4	2008.4		5176.7
GEN-155	4.16	1387.8	2371.4	3608.4	5	1867.7
					8	1704.1
					12	1598.9
ID.		1050.0		44334.0	15	1554.4
JB	4.16	4359.3	5661.7	11334.2	5	4459.2
					8	4359.3
					12	4359.3
					15	4359.3
JB-1A	4.16	4922.9	7630.2	12799.6	5	6009.5
					8	5483.1
					12	5144.8
					15	5001.5
JB-3	4.16	3375.7	3480	8776.9	5	3375.7
					8	3375.7
					12	3375.7
					15	3375.7
JB-3A	4.16	4912	7576.1	12771.1	5	5966.9
					8	5444.2
					12	5108.3
					15	4966
JB-4	4.16	3338.8	3435.9	8680.8	5	3338.8
					8	3338.8
					12	3338.8
					15	3338.8
JB-5	4.16	2213.8	2245.5	5755.8	5	2213.8
					8	2213.8
					12	2213.8
					15	2213.8
JB-6B	4.16	4961.8	7828.1	12900.6	5	6165.4
					8	5625.4
					12	5278.3
					15	5131.2
JB-36D	4.16	3220.6	3297	8373.6	5	3220.6
					8	3220.6
					12	3220.6
					12	3220.6
					15	5220.6

JB-A1	4.16	0	0	0	5	0
		Ĭ	Ĭ	Ŭ	8	0
					12	0
					15	0
JB-A2	4.16	4061.2	4385.6	10559.2	5	4061.2
					8	4061.2
					12	4061.2
					15	4061.2
JB-C1	4.16	4669.8	6681.9	12141.5	5	5262.7
					8	4801.7
					12	4669.8
					15	4669.8
JB-E1	4.16	4545.8	6131.9	11819.1	5	4829.5
					8	4545.8
					12	4545.8
					15	4545.8
JB-TSPG	4.16	4890.2	7470.9	12714.6	5	5884.1
					8	5368.7
					12	5037.4
					15	4897.1
JB-WP	4.16	4953	7782.4	12877.7	5	6129.4
					8	5592.5
					12	5247.4
					15	5101.3
KIWI	4.16	1808.7	1811.8	4702.5	5	1808.7
					8	1808.7
					12	1808.7
					15	1808.7
P-A1	4.16	0	0	0	5	0
					8	0
					12	0
					15	0
P-A2	4.16	4936	7695.6	12833.5	5	6061
					8	5530.1
					12	5188.9
					15	5044.4
P-A3	4.16	4844.6	6908.3	12596	5	5441
					8	4964.4
					12	4844.6
					15	4844.6
P-A4	4.16	4801.8	6607	12484.7	5	5203.7
					8	4801.8
					12	4801.8
					15	4801.8
P-A5	4.16	4705.6	6076.4	12234.7	5	4785.8
					8	4705.6
					12	4705.6
					15	4705.6

D. 4.C		1000 0	FFOC C	44054.0	-	4550.5
P-A6	4.16	4559.3	5500.6	11854.2	5	4559.3
					8	4559.3
					12	4559.3
					15	4559.3
P-A7	4.16	4488.1	5281.3	11669	5	4488.1
					8	4488.1
					12	4488.1
					15	4488.1
P-A8	4.16	4383.5	5006.3	11397.2	5	4383.5
					8	4383.5
					12	4383.5
					15	4383.5
P-A9	4.16	4331.6	4926	11262.3	5	4331.6
					8	4331.6
					12	4331.6
					15	4331.6
P-A9_A	4.16	4273.5	4837.4	11111.2	5	4273.5
					8	4273.5
					12	4273.5
					15	4273.5
P-A10	4.16	4327.1	4875.4	11250.4	5	4327.1
					8	4327.1
					12	4327.1
					15	4327.1
P-A10 COMMON D	4.16	4456.5	5860.9	11586.8	5	4616
					8	4456.5
					12	4456.5
					15	4456.5
P-A18	4.16	4237.1	4686.4	11016.6	5	4237.1
					8	4237.1
					12	4237.1
					15	4237.1
P-A19	4.16	4135.4	4495.3	10752	5	4135.4
					8	4135.4
					12	4135.4
					15	4135.4
P-A20	4.16	4106.1	4444	10675.9	5	4106.1
					8	4106.1
					12	4106.1
					15	4106.1
P-A21	4.16	3980.5	4238.5	10349.4	5	3980.5
					8	3980.5
					12	3980.5
					15	3980.5
P-A22	4.16	3980.5	4238.5	10349.4	5	3980.5
					8	3980.5
					12	3980.5
	1 1					

3 PHASE Fau	3 PHASE Fault		Total Fault Currents			
Bus Name	Bus kV	Sym Amps	Asym Amps	2.6*Sym Amps	Test X/R	Duties
P-A22 - D COMMON	4.16	4272.7	5120.2	11109	5	4272.7
					8	4272.7
					12	4272.7
					15	4272.7
P-A22.	4.16	4274.6	5126.4	11114	5	4274.6
					8	4274.6
					12	4274.6
					15	4274.6
P-A23	4.16	3881.5	4090.2	10091.9	5	3881.5
					8	3881.5
					12	3881.5
					15	3881.5
P-A24	4.16	3752.6	3910.9	9756.7	5	3752.6
1					8	3752.6
1					12	3752.6
1					15	3752.6
P-A25	4.16	3652.2	3779.6	9495.7	5	3652.2
					8	3652.2
					12	3652.2
					15	3652.2
P-A26	4.16	3663.7	3798.6	9525.6	5	3663.7
					8	3663.7
					12	3663.7
					15	3663.7
P-A28	4.16	3586.2	3700.2	9324.1	5	3586.2
-					8	3586.2
					12	3586.2
					15	3586.2
P-A29	4.16	3530.9	3631.8	9180.3	5	3530.9
					8	3530.9
					12	3530.9
					15	3530.9
P-A30	4.16	3430.3	3511.1	8918.8	5	3430.3
					8	3430.3
					12	3430.3
					15	3430.3
P-A32	4.16	3277.9	3335.2	8522.7	5	3277.9
					8	3277.9
					12	3277.9
					15	3277.9
P-A33	4.16	3264.2	3319.7	8486.9	5	3264.2
-					8	3264.2
-					12	3264.2
					15	3264.2
P-B	4.16	4905.4	7544	12754	5	5941.7
					8	5421.2
					12	5086.7
					15	4945

0.00		1000	7460 -	10712.0		5077.6
P-B2	4.16	4890	7462.7	12713.9	5	5877.6
					8	5362.7
					12	5031.8
0.02	4.45	494.6.9	6821.6	10502.0	15	4891.7
P-B3	4.16	4816.8	6821.6	12523.8	5	5372.7
					8	4902.1
					12	4816.8
P-B3.	4.16	0	0	0	15	4816.8
P-85.	4.16	0	0	0	5	0
					8 12	0
					12	0
P-B4	4.16	4741.5	6361.9	12327.9	15	5010.6
F-04	4.10	4/41.5	0501.5	12527.9	8	4741.5
					12 15	4741.5 4741.5
P-85	4.16	4666.6	5980	12133	15	4741.5
	4.16	4000.0	5980	12133		4709.8
					8 12	4666.6
					12	4666.6
P-86	4.16	4606.5	5727.7	11976.8	15	4606.5
r-00	4.10	4000.5	5/2/./	11976.8	5	4606.5
					12	4606.5
0.00	4.45	4507.0	5440.7	44770.6	15	4606.5
P-88	4.16	4527.9	5448.7	11772.6		4527.9
					8	4527.9
					12	4527.9
0.00	4.40	4440.2	5011.2	11557.0	15	4527.9
P-89	4.16	4449.2	5211.3	11567.9	5	4449.2
					8	4449.2 4449.2
					12	
0.010	4.10	4378.5	5005	11204.0	15	4449.2
P-B10	4.16	4378.5	5025	11384.2	5	4378.5
					8	4378.5
					12	4378.5
0.014	4.40	474.4.2	4010	11010.0	15	4378.5
P-B11	4.16	4314.2	4910	11216.8	5	4314.2
					8	4314.2
					12	4314.2
B B12	4.10	4004.0	4054.0	11100.0	15	4314.2
P-B12	4.16	4294.8	4864.9	11166.6	5	4294.8
					8	4294.8
					12	4294.8
0.040				44000 5	15	4294.8
P-B13	4.16	4234.3	4731.5	11009.3	5	4234.3
					8	4234.3
					12	4234.3
					15	4234.3

3 PHASE Fault		Tot			se Duties	
Bus Name	Bus kV	Sym Amps	Asym Amps	2.6*Sym Amps	Test X/R	Duty Amps
P-B14	4.16	4163	4587.1	10823.9	5	4163
					8	4163
					12	4163
					15	4163
P-815	4.16	4087.9	4447.2	10628.5	5	4087.9
1					8	4087.9
1					12	4087.9
					15	4087.9
P-B16	4.16	4328.1	4904.4	11253.1	5	4328.1
1					8	4328.1
1					12	4328.1
1					15	4328.1
P-B17	4.16	4237.1	4707	11016.4	5	4237.1
					8	4237.1
					12	4237.1
					15	4237.1
P-B20	4.16	4233.5	4727.5	11007.2	5	4233.5
					8	4233.5
					12	4233.5
					15	4233.5
P-C1	4.16	4924.2	7636.4	12802.9	5	6014.4
					8	5487.6
					12	5149
					15	5005.6
P-C2	4.16	0	0	0	5	0
					8	0
					12	0
P-C3	4.16	0	0	0	15	0
P-US	4.16	0	0	U	5	0
					12	0
					12	0
P-C4	4.16	0	0	0	5	0
	4.10	0	Ū	Ŭ	8	0
					12	o
					15	0
P-C5	4.16	0	0	0	5	0
					8	0
1					12	0
1					15	0
P-C6	4.16	0	0	0	5	0
					8	0
					12	0
					15	0
P-C7	4.16	0	0	0	5	0
					8	0
					12	0
					15	0

3 PHASE Fault		Tot	tal Fault Currents		Fuse	Duties
Bus Name	Bus kV	Sym Amps	Asym Amps	2.6*Sym Amps	Test X/R	Duty Amps
P-C8	4.16	0	0	0	5	0
					8	0
					12	0
					15	0
P-C9	4.16	0	0	0	5	0
					8	0
					12	0
					15	0
P-D2	4.16	0	0	0	5	0
					8	0
					12 15	0
P-D4	4.16	0	0	0	15	0
1-04	4.10	Ŭ	Ŭ	0	8	0
					12	0
					15	0
P-D5	4.16	0	0	0	5	0
					8	0
					12	0
					15	0
P-D6	4.16	0	0	0	5	0
					8	0
					12	0
					15	0
P-D7	4.16	0	0	0	5	0
					8	0
					12	0
					15	0
P-D8	4.16	0	0	0	5	0
					8	0
					12	0
0.00	4.16	4000.7	4594.9	10050 7	15	0 4098.7
P-D9	4.16	4098.7	4684.8	10656.7	8	
					12	4098.7
					12	4098.7
P-D33	4.16	4216.5	5002.4	10963	5	
		.220.5	5002.4	20000	8	4216.5
					12	4216.5
1					15	4216.5
P-D36	4.16	3225.9	3302.8	8387.3	5	
					8	
					12	3225.9
					15	3225.9
P-D37NC	4.16	4158.1	4836.2	10811	5	4158.1
					8	4158.1
					12	4158.1
					15	4158.1

3 PHASE Fa	ult	Tot	al Fault Currents		Fuse Duties	
Bus Name	Bus kV	Sym Amps	Asym Amps	2.6*Sym Amps	Test X/R	Duty Amps
P-D39	4.16	4184.1	4862.2	10878.7	5	4184.1
					8	4184.1
					12	4184.1
					15	4184.1
P-D40	4.16	4073.3	4591.8	10590.5	5	4073.3
					8	4073.3
					12	4073.3
					15	4073.3
POWER PLANT A	4.16	4981.5	7932.6	12952	5	6247.7
					8	5700.4
					12	5348.7
					15	5199.7
POWER PLANT A_A	4.16	4963.4	7836.6	12904.9	5	6172.1
					8	5631.5
					12	5284
					15	5136.8
PUMP HOUSE PRI	4.16	4814	6848	12516.5	5	5393.5
					8	4921
					12	4814
					15	4814
RWE POWERSTORE	4.16	3196.7	3270.7	8311.4	5	3196.7
					8	3196.7
					12	3196.7
					15	3196.7
SW-1	4.16	4949.3	7763.5	12868.2	5	6114.5
					8	5578.9
					12	5234.7
					15	5088.9
SW-2	4.16	4962.4	7831.3	12902.2	5	6167.9
					8	5627.6
					12	5280.4
					15	5133.3
SW-3	4.16	4949.3	7763.5	12868.2	5	6114.5
					8	5578.9
					12	5234.7
					15	5088.9
SW-4	4.16	4933	7680.4	12825.7	5	6049.1
					8	5519.2
					12	5178.6
					15	5034.4
SW-5	4.16	4976.5	7905.6	12938.8	5	6226.5
					8	5681
					12	5330.5
					15	5182
SW-6	4.16	4976.5	7905.6	12938.8	5	6226.4
			, 505.0	12000.0	8	5681
					12	5330.5
					12	5182
						5102

3 PHASE Fault		Tot	al Fault Currents	Fuse Duties		Duties
Bus Name	Bus kV	Sym Amps	Asym Amps	2.6*Sym Amps	Test X/R	Duty Amps
SWA-01	4.16	4115.4	4469.2	10700	5	4115.4
					8	4115.4
					12	4115.4
					15	4115.4
SWC-01	4.16	4915.5	7593	12780.2	5	5980.3
					8	5456.4
					12	5119.8
					15	4977.2
SWE-01	4.16	4539.6	6112.3	11803	5	4814.1
					8	4539.6
					12	4539.6
					15	4539.6
T-L (XFE-A)	4.16	4974.7	7896.2	12934.2	5	6219.1
					8	5674.3
					12	5324.2
					15	5175.9
T-PH-1	4.16	4947.1	7752.2	12862.5	5	6105.6
					8	5570.8
					12	5227.1
					15	5081.5
TIE SWITCH AC	4.16	0	0	0	5	0
					8	0
					12	0
					15	0
TW-1 PRI	4.16	4944.2	7737.2	12854.8	5	6093.8
					8	5560
					12	5216.9
					15	5071.6
TW-2 PRI	4.16	4944.2	7737.2	12854.8	5	6093.8
					8	5560
					12	5216.9
					15	5071.6
TW-2 PRI_A	4.16	4947.1	7752.2	12862.5	5	6105.6
					8	5570.8
					12	5227.1
					15	5081.5
XFA-4 PRI	4.16	4743.4	6324.4	12332.9	5	4981.1
					8	4743.4
					12	4743.4
					15	4743.4
XFA-5-PRI	4.16	4633	5810.4	12045.9	5	4633
					8	4633
					12	4633
					15	4633
XFA-6-PRI	4.16	4472	5266.8	11627.2	5	4472
					8	4472
					12	4472
					15	4472

3 PHASE Fault		Tot	tal Fault Currents		Fuse	Duties
Bus Name	Bus kV	Sym Amps	Asym Amps	2.6*Sym Amps	Test X/R	Duty Amps
XFA-6-PRI_A	4.16	0	0	0	5	0
					8	0
					12	0
					15	0
XFA-9A-PRI	4.16	4313.6	4888.3	11215.4	5	4313.6
					8	4313.6
					12	4313.6
					15	4313.6
XFA-9B-PRI	4.16	4255.8	4801.3	11065.2	5	4255.8
					8	4255.8
					12	4255.8
					15	4255.8
XFA-10A PRI	4.16	0	0	0	5	0
					8	0
					12	0
V54 400 001		4054.5	4777.0	10524	15	0
XFA-10B-PRI	4.16	4051.5	4373.2	10534	5	4051.5
					8	4051.5 4051.5
					12 15	4051.5
XFA-19-PRI	4.16	4117.3	4465.8	10705	15	4051.5
AFA-13-FN	4.10	4117.5	4405.0	10/05	8	4117.3
					12	4117.3
					15	4117.3
XFA-25-PRI	4.16	3636	3759.8	9453.6	5	3636
ALA-22-1 N	4.10	5656	5755.5	5455.0	8	3636
					12	3636
					15	3636
XFA-25A-PRI	4.16	3636	3759.8	9453.6	5	3636
					8	3636
					12	3636
1					15	3636
XFA-32-PRI	4.16	3264	3319.7	8486.3	5	3264
					8	3264
1					12	3264
					15	3264
XFA-B3B4 PRI	4.16	0	0	0	5	0
					8	0
					12	0
					15	0
XFA-HT PRI	4.16	0	0	0	5	0
					8	0
					12	0
					15	0
XFA-VEOC PRI	4.16	3883.1	4123.4	10096.1	5	3883.1
					8	3883.1
					12	3883.1
					15	3883.1

3 PHASE Fault	t	Tot	tal Fault Currents		Fuse	Duties
Bus Name	Bus kV	Sym Amps	Asym Amps	2.6*Sym Amps	Test X/R	Duty Amps
XFB-3-PRI	4.16	4803.8	6734.4	12489.9	5	5304
					8	4839.4
					12	4803.8
					15	4803.8
XFB-11-PRI	4.16	4296.3	4872.6	11170.4	5	4296.3
					8	4296.3
					12	4296.3
					15	4296.3
XFB-12-PRI	4.16	4277	4828.4	11120.1	5	4277
					8	4277
					12	4277
					15	4277
XFB-15-PRI	4.16	4070.3	4418.3	10582.7	5	4070.3
					8	4070.3
					12	4070.3
					15	4070.3
XFB-15A-PRI	4.16	4070.3	4418.3	10582.7	5	4070.3
1					8	4070.3
]					12	4070.3
					15	4070.3
XFB-17-PRI	4.16	4129.3	4515.7	10736.2	5	4129.3
					8	4129.3
					12	4129.3
					15	4129.3
XFB-20-PRI	4.16	4215.7	4693.7	10960.8	5	4215.7
					8	4215.7
					12	4215.7
					15	4215.7
XFC-8 -XFC-8 PRI	4.16	0	0	0	5	0
					8	0
					12	0
					15	0
XFC-8A PRI	4.16	4284.3	5460.1	11139.2	5	4300.4
					8	
					12	4284.3
					15	4284.3
XFC-8C PRI	4.16	3994.5	4790.1	10385.8		3994.5
					8	
					12	3994.5
NEO 0005 001					15	3994.5
XFC-B2B5 PRI	4.16	4514.1	5686.3	11736.6	5	4514.1
					8	4514.1
					12	4514.1
					15	4514.1
XFD-6-PRI	4.16	0	0	0	5	0
					8	0
					12	0
L					15	0

3 PHASE Fa	ult	Tot	Fuse	Duties		
Bus Name	Bus kV	Sym Amps	Asym Amps	2.6*Sym Amps	Test X/R	Duty Amps
XFD-17 PRI	4.16	3539.5	3700	9202.6	5	3539.5
					8	3539.5
					12	3539.5
					15	3539.9
XFD-17 PRI_B	4.16	3775.9	4052.1	9817.4	5	3775.9
					8	3775.9
					12	3775.9
					15	3775.9
XFD-17-1 PRI	4.16	3464.8	3603	9008.4	5	3464.8
					8	3464.8
					12	3464.8
					15	3464.8
XFD-17-1 PRI_A	4.16	2952.2	3003.6	7675.8	5	2952.2
					8	2952.2
					12	2952.2
					15	2952.2
XFD-18 PRI	4.16	3775.9	4052.1	9817.4	5	3775.9
					8	3775.9
					12	3775.9
					15	3775.9
XFD-25 PRI	4.16	3299.2	3391.1	8577.8	5	3299.2
					8	3299.2
					12	3299.2
					15	3299.2
XFD-35 PRI	4.16	2771.9	2796.9	7207	5	2771.9
					8	2771.9
					12	2771.9
					15	2771.9
XFD-36-D1	4.16	2153.4	2183.3	5598.9	5	2153.4
					8	2153.4
					12	2153.4
					15	2153.4
XFD-36-D2	4.16	2003.1	2028.7	5208	5	2003.1
	1.10	2005.1	2020.7	5200	8	2003.1
					12	2003.1
					15	2003.1
XFD-42-B PRI	4.16	3325	3419.5	8644.9	5	3325
are reer at	4.10	5525	5425.5	3011.3	8	3325
					12	3325
					15	3325
XFD-42A-PRI	4.16	3361.7	3463.2	8740.4	5	3361.7
	4.10	5501.7	5405.2	0740.4	8	3361.7
					12	3361.7
					12	3361.7
XFD-44	4.16	3620.6	3819.6	9413.6	5	3620.6
AI 0-11	4.10	5020.0	5015.0	5415.0		3620.6
					8	
					12	3620.6
					15	3620.0

3 PHASE Fa	ult	Tot	Fuse Duties			
Bus Name	Bus kV	Sym Amps	Asym Amps	2.6*Sym Amps	Test X/R	Duty Amps
XFD-45-PRI	4.16	3769.2	4033.2	9799.8	5	3769.2
					8	3769.2
					12	3769.2
					15	3769.2
XFE-A PRI	4.16	4400.5	5530.5	11441.3	5	4400.5
					8	4400.5
					12	4400.5
					15	4400.5
XFE-B PRI	4.16	4539.6	6112.3	11803	5	4814.1
					8	4539.6
					12	4539.6
					15	4539.6
XFE-C	4.16	0	0	0	5	0
					8	0
					12	0
					15	0
XFF-D-PRI	4.16	4947.1	7752.2	12862.5	5	6105.6
					8	5570.8
					12	5227.1
					15	5081.5

## LV Momentary Report

Vpu = 1.00

3 PHASE Fa	ult	Total Fault	Currents	Equipment	Duties
Bus Name	Bus kV	Sym Amps	Asym Amps	Equip Type	Duty Amps
A20-1	0.208	1703.4	1703.4	LVPCB	1703.4
				Fuse X/R = 1.73	1703.4
				Fuse X/R = 4.9	1703.4
				MCCB 10-20 kA	1703.4
				MCCB > 20 kA	1703.4
A22	0.208	4128.6	4128.8	LVPCB	4128.6
				Fuse X/R = 1.73	4128.6
				Fuse X/R = 4.9	4128.
				MCCB 10-20 kA	4128.
				MCCB > 20 kA	4128.6
A22-2	0.208	2904.4	2904.4	LVPCB	2904.4
				Fuse X/R = 1.73	2904.4
				Fuse X/R = 4.9	2904.4
				MCCB 10-20 kA	2904.4
				MCCB > 20 kA	2904.4
A22-3	0.208	2000.2	2000.2	LVPCB	2000.2
				Fuse X/R = 1.73	2000.2
				Fuse X/R = 4.9	2000.2
				MCCB 10-20 kA	2000.2
				MCCB > 20 kA	2000.2
A23	0.208	2675.2	2675.2	LVPCB	2675.2
				Fuse X/R = 1.73	2675.2
				Fuse X/R = 4.9	2675.2
				MCCB 10-20 kA	2675.2
				MCCB > 20 kA	2675.2
B-3	0.48	14383.6	18180.9	LVPCB	14383.6
				Fuse X/R = 1.73	18433.2
				Fuse X/R = 4.9	14383.6
				MCCB 10-20 kA	1581
				MCCB > 20 kA	14383.6
B-3 AND B-4	0.48	0	0	LVPCB	(
				Fuse X/R = 1.73	
				Fuse X/R = 4.9	
				MCCB 10-20 kA	
				MCCB > 20 kA	
B-5	0.48	14383.6	18180.9	LVPCB	14383.6
				Fuse X/R = 1.73	18433.2
				Fuse X/R = 4.9	14383.0
				MCCB 10-20 kA	15819
				MCCB > 20 kA	14383.6
B-15-SEC	0.208	15234.7	15414.6		15234.3
				Fuse X/R = 1.73	15234.7
				Fuse X/R = 4.9	15234.7
				MCCB 10-20 kA	15234.7
				MCCB > 20 kA	15234.7

3 PHASE Fau	lt	Total Fault	Currents	Equipmen	t Duties
Bus Name	Bus kV	Sym Amps	Asym Amps	Equip Type	Duty Amps
B-15-SEC_A	0.208	5608.4	5608.4	LVPCB	5608.4
				Fuse X/R = 1.73	5608.4
				Fuse X/R = 4.9	5608.4
				MCCB 10-20 kA	5608.4
				MCCB > 20 kA	5608.4
B-15-SEC_B	0.208	5608.4	5608.4	LVPCB	5608.4
-				Fuse X/R = 1.73	5608.4
				Fuse X/R = 4.9	5608.4
				MCCB 10-20 kA	5608.4
				MCCB > 20 kA	5608.4
8-155	0.208	20136.4	23654.4		20136.4
				Fuse X/R = 1.73	23956.7
				Fuse X/R = 4.9	20136.4
				MCCB 10-20 kA	20553.9
				MCCB > 20 kA	20136.4
B-167	0.208	464.8	464.9	LVPCB	464.8
D-10/	0.208	404.0	404.0		464.8
				Fuse X/R = 1.73	
				Fuse X/R = 4.9	464.8
				MCCB 10-20 kA	464.8
				MCCB > 20 kA	464.8
B-182 COM	0.208	3064.3	3064.3		3064.3
				Fuse X/R = 1.73	3064.3
				Fuse X/R = 4.9	3064.3
				MCCB 10-20 kA	3064.3
				MCCB > 20 kA	3064.3
B-188	0.208	464.8	464.8	LVPCB	464.8
				Fuse X/R = 1.73	464.8
				Fuse X/R = 4.9	464.8
				MCCB 10-20 kA	464.8
				MCCB > 20 kA	464.8
B-221	0.208	7025	7617.3	LVPCB	7025
				Fuse X/R = 1.73	7546.2
				Fuse X/R = 4.9	7025
				MCCB 10-20 kA	7025
				MCCB > 20 kA	7025
B4-LOUNGE	0.208	1198.2	1198.2	LVPCB	1198.2
				Fuse X/R = 1.73	1198.2
				Fuse X/R = 4.9	1198.2
				MCCB 10-20 kA	1198.2
				MCCB > 20 kA	1198.2
B4-THEATER	0.208	1198.2	1198.2		1198.2
br-menen	0.200	1150.2	1150.2	Fuse X/R = 1.73	1198.2
				Fuse X/R = 4.9	1198.2
				MCCB 10-20 kA	1198.2
				MCCB > 20 kA	1198.2
07	0.000	2254.0	0007.5		
B7	0.208	2264.9	2267.5		2264.9
				Fuse X/R = 1.73	2264.9
				Fuse X/R = 4.9	2264.9
				MCCB 10-20 kA	2264.9
				MCCB > 20 kA	2264.9

3 PHASE Fau	ilt	Total Fault	Currents	Equipment	Duties
Bus Name	Bus kV	Sym Amps	Asym Amps	Equip Type	Duty Amps
310	0.208	3288.5	3341.5	LVPCB	3288.5
				Fuse X/R = 1.73	3288.5
				Fuse X/R = 4.9	3288.5
				MCCB 10-20 kA	3288.5
				MCCB > 20 kA	3288.5
868	0.208	17488.3	19047.6	LVPCB	17488.3
				Fuse X/R = 1.73	18912.8
				Fuse X/R = 4.9	17488.3
				MCCB 10-20 kA	17488.3
				MCCB > 20 kA	17488.3
B72	0.208	1671.1	1671.1		1671.1
				Fuse X/R = 1.73	1671.1
				Fuse X/R = 4.9	1671.1
				MCCB 10-20 kA	1671.1
				MCCB > 20 kA	1671.1
873	0.208	10707.4	11074	LVPCB	10707.4
575	0.208	10/07.4	110/4		10707.4
				Fuse X/R = 1.73 Fuse X/R = 4.9	
					10707.4
				MCCB 10-20 kA	10707.4
				MCCB > 20 kA	10707.4
B75	0.208	0	0	LVPCB	0
				Fuse X/R = 1.73	0
				Fuse X/R = 4.9	0
				MCCB 10-20 kA	0
				MCCB > 20 kA	0
B129	0.208	0	0	LVPCB	0
				Fuse X/R = 1.73	0
				Fuse X/R = 4.9	0
				MCCB 10-20 kA	0
				MCCB > 20 kA	0
B132	0.208	2479	2479	LVPCB	2479
				Fuse X/R = 1.73	2479
				Fuse X/R = 4.9	2479
				MCCB 10-20 kA	2479
				MCCB > 20 kA	2479
B136A	0.208	6651.6	6652.5	LVPCB	6651.6
				Fuse X/R = 1.73	6651.6
				Fuse X/R = 4.9	6651.6
				MCCB 10-20 kA	6651.6
				MCCB > 20 kA	6651.6
B136C	0.208	6651.6	6652.5		6651.6
				Fuse X/R = 1.73	6651.6
				Fuse X/R = 4.9	6651.6
				MCCB 10-20 kA	6651.6
				MCCB > 20 kA	6651.6
8141	0.208	1887.7	1887.7		1887.7
	0.200	1007.7	1007.7	Fuse X/R = 1.73	1887.7
				Fuse X/R = 4.9	1887.7
				MCCB 10-20 kA	1887.7
	1			MCCB > 20 kA	1887.7

B150	0.208	9713	9739.8	LVPCB	9713
				Fuse X/R = 1.73	9713
				Fuse X/R = 4.9	9713
				MCCB 10-20 kA	9713
				MCCB > 20 kA	9713
B159	0.208	0	0	LVPCB	0
		_		Fuse X/R = 1.73	0
				Fuse X/R = 4.9	0
				MCCB 10-20 kA	0
				MCCB > 20 kA	0
B160	0.208	10707.4	11074	LVPCB	10707.4
				Fuse X/R = 1.73	10707.4
				Fuse X/R = 4.9	10707.4
				MCCB 10-20 kA	10707.4
				MCCB > 20 kA	10707.4
B166	0.208	563.9	563.9	LVPCB	563.9
5100	0.200	505.5	505.5	Fuse X/R = 1.73	563.9
				Fuse X/R = 4.9	563.9
				MCCB 10-20 kA	563.9
					563.9
B168	0.208	1580.2	1580.2	MCCB > 20 kA	1580.2
8168	0.208	1580.2	1580.2		
				Fuse X/R = 1.73	1580.2
				Fuse X/R = 4.9	1580.2
				MCCB 10-20 kA	1580.2
				MCCB > 20 kA	1580.2
B174	0.208	5736	5806.4		5736
				Fuse X/R = 1.73	5736
				Fuse X/R = 4.9	5736
				MCCB 10-20 kA	5736
				MCCB > 20 kA	5736
B175	0.208	4128.6	4128.8		4128.6
				Fuse X/R = 1.73	4128.6
				Fuse X/R = 4.9	4128.6
				MCCB 10-20 kA	4128.6
				MCCB > 20 kA	4128.6
B182 VEH HTRS 1	0.208	4216.7	4216.7		4216.7
				Fuse X/R = 1.73	4216.7
				Fuse X/R = 4.9	4216.7
				MCCB 10-20 kA	4216.7
				MCCB > 20 kA	4216.7
B182 VEH HTRS 2	0.208	4816.1	4816.1	LVPCB	4816.1
				Fuse X/R = 1.73	4816.1
				Fuse X/R = 4.9	4816.1
				MCCB 10-20 kA	4816.1
				MCCB > 20 kA	4816.1
8185	0.208	5736	5806.4	LVPCB	5736
				Fuse X/R = 1.73	5736
				Fuse X/R = 4.9	5736
				MCCB 10-20 kA	5736
	1 1			MCCB > 20 kA	5736

B191	0.208	18488.3	20270.8	IVPCB	18488.3
5151	0.200	10400.5		Fuse X/R = 1.73	20189
					18488.3
				Fuse X/R = 4.9	
				MCCB 10-20 kA	18488.3
P102	0.000	2020.4	2928.5	MCCB > 20 kA	18488.3 2928.4
B192	0.208	2928.4	2928.5		
				Fuse X/R = 1.73	2928.4
				Fuse X/R = 4.9	2928.4
				MCCB 10-20 kA	2928.4
				MCCB > 20 kA	2928.4
B341	0.208	17488.3	19047.6		17488.3
				Fuse X/R = 1.73	18912.8
				Fuse X/R = 4.9	17488.3
				MCCB 10-20 kA	17488.3
				MCCB > 20 kA	17488.3
B344	0.208	806.6	806.6	LVPCB	806.6
				Fuse X/R = 1.73	806.6
				Fuse X/R = 4.9	806.6
				MCCB 10-20 kA	806.6
				MCCB > 20 kA	806.6
BLDG 10	0.48	12248.3	15593.4	LVPCB	12248.3
				Fuse X/R = 1.73	15802.9
				Fuse X/R = 4.9	12328.5
				MCCB 10-20 kA	13558.3
				MCCB > 20 kA	12328.5
BUILDING 4	0.208	13842	14054.4	LVPCB	13842
				Fuse X/R = 1.73	13842
				Fuse X/R = 4.9	13842
				MCCB 10-20 kA	13842
				MCCB > 20 kA	13842
BUS-9	0.208	273.2	273.2	LVPCB	273.2
				Fuse X/R = 1.73	273.2
				Fuse X/R = 4.9	273.2
				MCCB 10-20 kA	273.2
				MCCB > 20 kA	273.2
BUS-10	0.208	0	0	LVPCB	0
				Fuse X/R = 1.73	0
				Fuse X/R = 4.9	0
				MCCB 10-20 kA	0
				MCCB > 20 kA	0
CORE FREEZER SEC	0.48	12322.9	15909.6		12322.9
	0.10	22022.0		Fuse X/R = 1.73	16106.3
				Fuse X/R = 4.9	12565.1
				MCCB 10-20 kA	13818.6
				MCCB > 20 kA	12565.1
D-40 SEC	0.208	1522.8	1522.8		12565.1
0-40 360	0.208	1522.8			
				Fuse X/R = 1.73	1522.8
				Fuse X/R = 4.9	1522.8
				MCCB 10-20 kA	1522.8
				MCCB > 20 kA	1522.8

D39 SEC	0.208	2928.4	2928.5	LVPCB	2928.4
				Fuse X/R = 1.73	2928.4
				Fuse X/R = 4.9	2928.4
				MCCB 10-20 kA	2928.4
				MCCB > 20 kA	2928.4
D40 SEC	0.208	2265	2265	LVPCB	2265
				Fuse X/R = 1.73	2265
				Fuse X/R = 4.9	2265
				MCCB 10-20 kA	2265
				MCCB > 20 kA	2265
HT-165	0.48	0	0	LVPCB	0
				Fuse X/R = 1.73	0
				Fuse X/R = 4.9	0
				MCCB 10-20 kA	0
				MCCB > 20 kA	0
HTA	0.48	4684.6	5408.8	LVPCB	4684.6
				Fuse X/R = 1.73	5465.7
				Fuse X/R = 4.9	4684.6
				MCCB 10-20 kA	4689.3
				MCCB > 20 kA	4684.6
HTA_A	0.48	4684.6	5408.8		4684.6
	0.10	1001.0	2100.0	Fuse X/R = 1.73	5465.7
				Fuse X/R = 4.9	4684.6
				MCCB 10-20 kA	4689.3
				MCCB > 20 kA	4684.6
HTA_B	0.48	4684.6	5408.8		4684.6
<u>.</u>	0.40	4004.0	5466.6	Fuse X/R = 1.73	5465.7
				Fuse X/R = 4.9	4684.6
				MCCB 10-20 kA	4689.3
				MCCB > 20 kA	4684.6
HTP#1	0.48	0	0	LVPCB	4004.0
H1F#1	0.46	v	0	Fuse X/R = 1.73	0
				Fuse X/R = 4.9	_
					0
				MCCB 10-20 kA	0
				MCCB > 20 kA	0
HTP#2	0.48	0	0	LVPCB	0
				Fuse X/R = 1.73	0
				Fuse X/R = 4.9	0
				MCCB 10-20 kA	0
				MCCB > 20 kA	0
HTP-5	0.48	4684.6	5408.8	LVPCB	4684.6
				Fuse X/R = 1.73	5465.7
				Fuse X/R = 4.9	4684.6
				MCCB 10-20 kA	4689.3
				MCCB > 20 kA	4684.6
нтрз	0.48	0	0	LVPCB	0
				Fuse X/R = 1.73	0
				Fuse X/R = 4.9	0
				MCCB 10-20 kA	0
				MCCB > 20 kA	0

HTP4	0.48	4684.6	5408.8		4684.6
				Fuse X/R = 1.73	5465.7
				Fuse X/R = 4.9	4684.6
				MCCB 10-20 kA	4689.3
				MCCB > 20 kA	4684.6
HTP6	0.48	4684.6	5408.8		4684.6
				Fuse X/R = 1.73	5465.7
				Fuse X/R = 4.9	4684.6
				MCCB 10-20 kA	4689.3
				MCCB > 20 kA	4684.6
LDB HE COMPRESS	0.208	13400	13576		13400
				Fuse X/R = 1.73	13400
				Fuse X/R = 4.9	13400
				MCCB 10-20 kA	13400
				MCCB > 20 kA	13400
LOAD BANKS	0.48	15470.7	21420		15880.3
				Fuse X/R = 1.73	21498.5
				Fuse X/R = 4.9	16771.8
				MCCB 10-20 kA	18444.9
				MCCB > 20 kA	16771.8
P-35 SEC	0.208	16748	17944.8	LVPCB	16748
				Fuse X/R = 1.73	17652.3
				Fuse X/R = 4.9	16748
				MCCB 10-20 kA	16748
				MCCB > 20 kA	16748
P-A20-1	0.208	9794.5	9971.1	LVPCB	9794.5
1				Fuse X/R = 1.73	9794.5
1				Fuse X/R = 4.9	9794.5
				MCCB 10-20 kA	9794.5
1				MCCB > 20 kA	9794.5
P-A26 LITE SOUTH	0.208	1744.5	1744.5	LVPCB	1744.5
				Fuse X/R = 1.73	1744.5
				Fuse X/R = 4.9	1744.5
				MCCB 10-20 kA	1744.5
				MCCB > 20 kA	1744.5
P-A26 SEC	0.208	2715.1	2716.1	LVPCB	2715.1
				Fuse X/R = 1.73	2715.1
				Fuse X/R = 4.9	2715.1
				MCCB 10-20 kA	2715.1
				MCCB > 20 kA	2715.1
P-A27	0.208	1612.3	1612.3		1612.3
				Fuse X/R = 1.73	1612.3
				Fuse X/R = 4.9	1612.3
				MCCB 10-20 kA	1612.3
				MCCB > 20 kA	1612.3
P-A30-SEC	0.208	3507.8	3512.6		3507.8
	0.200	2207.0	5512.0	Fuse X/R = 1.73	3507.8
				Fuse X/R = 4.9	3507.8
				MCCB 10-20 kA	3507.8
				MCCB > 20 kA	3507.8
				11000 - 20 M	0.1066

3 PHASE Fa	ult	Total Fault	Currents	Equipment Duties		
Bus Name	Bus kV	Sym Amps	Asym Amps	Equip Type	Duty Amps	
P-A31 (SEC)	0.208	5295.8	5359.8	LVPCB	5295.	
				Fuse X/R = 1.73	5295.	
				Fuse X/R = 4.9	5295.	
				MCCB 10-20 kA	5295.	
				MCCB > 20 kA	5295.	
P-A31 SEC WEST	0.208	3507.8	3512.6	LVPCB	3507.	
				Fuse X/R = 1.73	3507.	
				Fuse X/R = 4.9	3507.	
				MCCB 10-20 kA	3507.	
				MCCB > 20 kA	3507.	
P-B1	0.208	3689	3831.6	LVPCB	368	
				Fuse X/R = 1.73	368	
				Fuse X/R = 4.9	368	
				MCCB 10-20 kA	368	
				MCCB > 20 kA	368	
P-B3-SEC	0.208	3840.3	4006.5		3840.	
1-00-000	0.200	5640.5	4000.5	Fuse X/R = 1.73	3851.	
				Fuse X/R = 4.9	3840.	
				MCCB 10-20 kA	3840.	
D DE 050	0.000	1651.7	4654.0	MCCB > 20 kA	3840.	
P-B5-SEC	0.208	1651.7	1651.9		1651.	
				Fuse X/R = 1.73	1651.	
				Fuse X/R = 4.9	1651.	
				MCCB 10-20 kA	1651.	
				MCCB > 20 kA	1651.	
P-B82	0.208	2161	2162.7		216	
				Fuse X/R = 1.73	216	
				Fuse X/R = 4.9	216	
				MCCB 10-20 kA	216	
				MCCB > 20 kA	216	
P-B82_A	0.208	1460.1	1460.1		1460.	
				Fuse X/R = 1.73	1460.	
				Fuse X/R = 4.9	1460.	
				MCCB 10-20 kA	1460.	
				MCCB > 20 kA	1460.	
P-C4 SEC	0.208	0	0	LVPCB		
				Fuse X/R = 1.73		
				Fuse X/R = 4.9		
				MCCB 10-20 kA		
				MCCB > 20 kA		
P-C4-1	0.208	0	0	LVPCB		
				Fuse X/R = 1.73		
				Fuse X/R = 4.9		
				MCCB 10-20 kA		
				MCCB > 20 kA		
P-C5 SEC	0.208	0	0	LVPCB		
				Fuse X/R = 1.73		
				Fuse X/R = 4.9		
				MCCB 10-20 kA		
				MCCB > 20 kA		

3 PHASE Fa	ult	Total Fault	Currents	Equipment Duties		
Bus Name	Bus kV	Sym Amps	Asym Amps	Equip Type	Duty Amps	
P-C6 SEC	0.208	0	0	LVPCB	(	
				Fuse X/R = 1.73		
				Fuse X/R = 4.9		
				MCCB 10-20 kA	0	
				MCCB > 20 kA	0	
P-C6-1	0.208	0	0	LVPCB	0	
				Fuse X/R = 1.73	0	
				Fuse X/R = 4.9	0	
				MCCB 10-20 kA		
				MCCB > 20 kA		
P-C6-2	0.208	0	0	LVPCB	0	
	0.200	ŭ	Ŭ	Fuse X/R = 1.73		
				Fuse X/R = 4.9		
				MCCB 10-20 kA		
				MCCB > 20 kA		
0.07.050	0.202	0		LVPCB	0	
P-C7 SEC	0.208	0	U			
				Fuse X/R = 1.73	0	
				Fuse X/R = 4.9	0	
				MCCB 10-20 kA	C	
	_			MCCB > 20 kA	0	
P-C8 SEC	0.208	0	0	LVPCB	0	
				Fuse X/R = 1.73	0	
				Fuse X/R = 4.9	0	
				MCCB 10-20 kA	0	
				MCCB > 20 kA	0	
POLE-B166	0.208	631.2	631.2	LVPCB	631.2	
				Fuse X/R = 1.73	631.2	
				Fuse X/R = 4.9	631.2	
				MCCB 10-20 kA	631.2	
				MCCB > 20 kA	631.2	
POLE 167	0.208	509.6	509.6	LVPCB	509.6	
				Fuse X/R = 1.73	509.6	
				Fuse X/R = 4.9	509.6	
				MCCB 10-20 kA	509.6	
				MCCB > 20 kA	509.6	
PUMP HOUSE-SEC	0.48	2548.9	2765.9	LVPCB	2548.9	
				Fuse X/R = 1.73	2741.3	
				Fuse X/R = 4.9	2548.9	
				MCCB 10-20 kA	2548.9	
				MCCB > 20 kA	2548.9	
SCOTT BASE G1	0.4	80	80	LVPCB	80	
	0.4	50	80	Fuse X/R = 1.73	80	
				Fuse X/R = 1.75	80	
					80	
				MCCB 10-20 kA		
SCOTT BASS CO				MCCB>20 kA	80	
SCOTT BASE G2	0.4	80	80	LVPCB	80	
				Fuse X/R = 1.73	80	
				Fuse X/R = 4.9	80	
				MCCB 10-20 kA	80	
				MCCB > 20 kA	80	

3 PHASE Fau	ilt	Total Fault	Currents	Equipment Duties		
Bus Name	Bus kV	Sym Amps	Asym Amps	Equip Type	Duty Amps	
T-PH-1 SEC	0.48	15436.8	21302.7	LVPCB	15801.	
				Fuse X/R = 1.73	21391.8	
				Fuse X/R = 4.9	16688.	
				MCCB 10-20 kA	18353.3	
				MCCB > 20 kA	16688.	
T-W-1 SEC	0.208	35615	49131.6	LVPCB	36445.3	
				Fuse X/R = 1.73	49339.	
				Fuse X/R = 4.9	38491.0	
				MCCB 10-20 kA	42331.4	
				MCCB > 20 kA	38491.0	
T-W-2 SEC	0.48	15433.2	21290.4		15793.3	
1-W-2 SEC	0.46	15455.2	21290.4			
				Fuse X/R = 1.73	21380.	
				Fuse X/R = 4.9	16679.7	
				MCCB 10-20 kA	18343.0	
				MCCB > 20 kA	16679.3	
T-W-2 SEC_A	0.208	35623.3	49160.2		36464.9	
				Fuse X/R = 1.73	49365.6	
				Fuse X/R = 4.9	38511.9	
				MCCB 10-20 kA	42353.7	
				MCCB > 20 kA	38511.9	
USAP B70	0.208	6946	7515.4	LVPCB	6946	
				Fuse X/R = 1.73	7436.	
				Fuse X/R = 4.9	694	
				MCCB 10-20 kA	6946	
				MCCB > 20 kA	6946	
VEHICLE HTRS	0.208	0	0	LVPCB	(	
				Fuse X/R = 1.73		
				Fuse X/R = 4.9		
				MCCB 10-20 kA		
				MCCB > 20 kA		
VEOC	0.48	8914.1	10474.8		8914.3	
VEOC	0.46	0514.1	10474.0		1060	
				Fuse X/R = 1.73		
				Fuse X/R = 4.9	8914.:	
				MCCB 10-20 kA	9102.1	
				MCCB > 20 kA	8914.:	
WTG-SOURCE-1	0.4	80	80	LVPCB	80	
				Fuse X/R = 1.73	80	
				Fuse X/R = 4.9	80	
				MCCB 10-20 kA	80	
				MCCB > 20 kA	80	
WTG-SOURCE-2	0.4	80	80	LVPCB	8	
				Fuse X/R = 1.73	80	
				Fuse X/R = 4.9	80	
				MCCB 10-20 kA	8	
				MCCB > 20 kA	8	
WTG- SOURCE-3	0.4	80	80	LVPCB	8	
		20	50	Fuse X/R = 1.73	80	
				Fuse X/R = 4.9	80	
				MCCB 10-20 kA	80	
	1 I			INICUB 10-20 KA	. 8	

3 PHASE Fau	t	Total Fault	Currents	Equipment Duties			
Bus Name	Bus kV	Sym Amps	Asym Amps	Equip Type	Duty Amps		
WTG-1	0.4	80	80	LVPCB	80		
				Fuse X/R = 1.73	80		
				Fuse X/R = 4.9	80		
				MCCB 10-20 kA	80		
				MCCB > 20 kA	80		
WTG-1_A	0.4	80	80	LVPCB	80		
				Fuse X/R = 1.73	80		
				Fuse X/R = 4.9	80		
				MCCB 10-20 kA	80		
				MCCB > 20 kA	80		
WTG-1_B	0.4	80	80	LVPCB	80		
	0.4			Fuse X/R = 1.73	80		
				Fuse X/R = 4.9	80		
				MCCB 10-20 kA	80		
				MCCB > 20 kA	80		
WTG-1_C	0.4	80	80	LVPCB	80		
				Fuse X/R = 1.73	80		
				Fuse X/R = 4.9	80		
				MCCB 10-20 kA	80		
				MCCB > 20 kA	80		
WTG-2	0.4	80	80	LVPCB	80		
				Fuse X/R = 1.73	80		
				Fuse X/R = 4.9	80		
				MCCB 10-20 kA	80		
				MCCB > 20 kA	80		
XFA-4 SEC	0.48	4787.6	5634.6	LVPCB	4787.6		
				Fuse X/R = 1.73	5707.7		
				Fuse X/R = 4.9	4787.6		
				MCCB 10-20 kA	4897		
				MCCB > 20 kA	4787.6		
XFA-5-SEC	0.208	21829.4	27241.5		21829.4		
ATT-3-020	0.200	21020.4	27242.5	Fuse X/R = 1.73	27635.5		
				Fuse X/R = 4.9	21829.4		
				MCCB 10-20 kA	23710.1		
VEA 6 850	0.000	04652.4	00504.7	MCCB > 20 kA	21829.4		
XFA-6-SEC	0.208	21653.4	26581.7		21653.4		
				Fuse X/R = 1.73	26975		
				Fuse X/R = 4.9	21653.4		
				MCCB 10-20 kA	23143.5		
				MCCB > 20 kA	21653.4		
XFA-6-SEC_A	0.208	0	0	LVPCB	0		
				Fuse X/R = 1.73	0		
				Fuse X/R = 4.9	0		
				MCCB 10-20 kA	0		
				MCCB > 20 kA	0		
XFA-9-A-SEC	0.208	21481.8	26035.3	LVPCB	21481.8		
				Fuse X/R = 1.73	26417.6		
				Fuse X/R = 4.9	21481.8		
				MCCB 10-20 kA	22665.3		
				MCCB > 20 kA			

3 PHASE Fault		Total Fault	Currents	Equipment Duties			
Bus Name	Bus kV	Sym Amps	Asym Amps	Equip Type	Duty Amps		
KFA-9-B-SEC	0.208	21413.1	25903.6	LVPCB	21413.1		
				Fuse X/R = 1.73	26282.8		
				Fuse X/R = 4.9	21413.1		
				MCCB 10-20 kA	22549.6		
				MCCB > 20 kA	21413.1		
KFA-10A-SEC	0.208	0	0	LVPCB	0		
				Fuse X/R = 1.73	0		
				Fuse X/R = 4.9	0		
				MCCB 10-20 kA	0		
				MCCB > 20 kA	0		
(FA-10B-SEC	0.208	21202.3	25144.4	LVPCB	21202.3		
				Fuse X/R = 1.73	25487.3		
				Fuse X/R = 4.9	21202.3		
				MCCB 10-20 kA	21867.1		
				MCCB > 20 kA	21202.3		
(FA-19-SEC	0.208	21281.4	25310.2	LVPCB	21281.4		
				Fuse X/R = 1.73	25660.5		
				Fuse X/R = 4.9	21281.4		
				MCCB 10-20 kA	22015.7		
				MCCB > 20 kA	21281.4		
(FA-25-A-SEC	0.208	20746.4	23834.9	LVPCB	20746.4		
				Fuse X/R = 1.73	24065.1		
				Fuse X/R = 4.9	20746.4		
				MCCB 10-20 kA	20746.4		
				MCCB > 20 kA	20746.4		
(FA-25-SEC	0.208	20746.4	23834.9		20746.4		
				Fuse X/R = 1.73	24065.1		
				Fuse X/R = 4.9	20746.4		
				MCCB 10-20 kA	20746.4		
				MCCB > 20 kA	20746.4		
(FA-32-SEC	0.208	7415.9	8110.9		7415.9		
	0.200	1 125.5	0110.5	Fuse X/R = 1.73	8069.3		
				Fuse X/R = 4.9	7415.9		
				MCCB 10-20 kA	7415.9		
				MCCB > 20 kA	7415.9		
(FA-B3B4 SEC.	0.48	0	0	LVPCB	0		
	0.40	Ŭ	Ŭ	Fuse X/R = 1.73	0		
				Fuse X/R = 4.9	0		
				MCCB 10-20 kA	0		
				MCCB > 20 kA	0		
(FA-HT-SEC	0.48	0	0	LVPCB	0		
AFA-HT-SEC	0.46	Ŭ	U	Fuse X/R = 1.73			
					0		
				Fuse X/R = 4.9	0		
				MCCB 10-20 kA	0		
(FR 3 6FC	0.000	4002.4	4402.5	MCCB > 20 kA	0		
(FB-3-SEC	0.208	4003.1	4198.6		4003.1		
				Fuse X/R = 1.73	4058.8		
				Fuse X/R = 4.9	4003.1		
				MCCB 10-20 kA	4003.1		
				MCCB > 20 kA	4003.1		

3 PHASE Fault	:	Total Fault	Currents	Equipment Duties		
Bus Name	Bus kV	Sym Amps	Asym Amps	Equip Type	Duty Amps	
XFB-11 SEC	0.208	21459.8	26013.8	LVPCB	21459.8	
				Fuse X/R = 1.73	26395.9	
				Fuse X/R = 4.9	21459.8	
				MCCB 10-20 kA	22646.7	
				MCCB > 20 kA	21459.8	
XFB-12 SEC	0.208	11173.3	12934.4	LVPCB	11173.3	
				Fuse X/R = 1.73	13075.6	
				Fuse X/R = 4.9	11173.3	
				MCCB 10-20 kA	11218.3	
				MCCB > 20 kA	11173.3	
XFB-15 SEC	0.208	21217.3	25234.3	LVPCB	21217.3	
				Fuse X/R = 1.73	25583.6	
				Fuse X/R = 4.9	21217.3	
				MCCB 10-20 kA	21949.7	
				MCCB > 20 kA	21217.3	
XFB-15A SEC	0.48	4813.1	5531.5		4813.1	
A10-104020	0.40	4015.1	5551.5	Fuse X/R = 1.73	5585.3	
				Fuse X/R = 4.9	4813.1	
				MCCB 10-20 kA	4813.1	
				MCCB > 20 kA	4813.1	
XFB-17 SEC	0.208	21284.1	25410.4		21284.1	
AFB-17 SEC	0.208	21204.1	25410.4		25768.3	
				Fuse X/R = 1.73		
				Fuse X/R = 4.9	21284.1	
				MCCB 10-20 kA	22108.2	
				MCCB > 20 kA	21284.1	
XFB-20 SEC	0.208	21374	25722.9		21374	
				Fuse X/R = 1.73	26095.1	
				Fuse X/R = 4.9	21374	
				MCCB 10-20 kA	22388.6	
				MCCB > 20 kA	21374	
XFC-8-SEC	0.208	0	0	LVPCB	0	
				Fuse X/R = 1.73	0	
				Fuse X/R = 4.9	0	
				MCCB 10-20 kA	0	
				MCCB > 20 kA	0	
XFC-8A SEC	0.48	0	0	LVPCB	0	
				Fuse X/R = 1.73	0	
				Fuse X/R = 4.9	0	
				MCCB 10-20 kA	0	
				MCCB > 20 kA	0	
XFC-8B SEC	0.208	21419.5	26835.9	LVPCB	21419.5	
				Fuse X/R = 1.73	27219.9	
				Fuse X/R = 4.9	21419.5	
				MCCB 10-20 kA	23353.6	
				MCCB > 20 kA	21419.5	
XFC-8C SEC	0.208	21040.5	25938.8	LVPCB	21040.5	
				Fuse X/R = 1.73	26321.5	
				Fuse X/R = 4.9	21040.5	
				MCCB 10-20 kA	22582.8	
				MCCB > 20 kA	21040.5	

3 PHASE Fa	ult	Total Fault	Currents	Equipment	Duties
Bus Name	Bus kV	Sym Amps	Asym Amps	Equip Type	Duty Amps
XFC-B2B5-SEC	0.48	14898	19159.2	LVPCB	14898
				Fuse X/R = 1.73	19402.3
				Fuse X/R = 4.9	15136.9
				MCCB 10-20 kA	16646.4
				MCCB > 20 kA	15136.9
XFD-5-SEC	0.208	0	0	LVPCB	(
				Fuse X/R = 1.73	
				Fuse X/R = 4.9	
				MCCB 10-20 kA	
				MCCB > 20 kA	
XFD-17 SEC	0.208	20533	23764.5		2053
				Fuse X/R = 1.73	24023.1
				Fuse X/R = 4.9	20533
				MCCB 10-20 kA	20610.9
				MCCB > 20 kA	20533
XFD-17-1 SEC	0.208	20433.6	23531.6		20433.6
AFD-17-13EC	0.200	20455.0	25551.0		23768.7
				Fuse X/R = 1.73 Fuse X/R = 4.9	
					20433.6
				MCCB 10-20 kA	20433.6
				MCCB > 20 kA	20433.6
XFD-18-SEC	0.208	20821.6	24560	LVPCB	20821.6
				Fuse X/R = 1.73	24883.7
				Fuse X/R = 4.9	20821.6
				MCCB 10-20 kA	21349.3
				MCCB > 20 kA	20821.6
XFD-19 SEC	0.208	20821.6	24560	LVPCB	20821.6
				Fuse X/R = 1.73	24883.7
				Fuse X/R = 4.9	20821.6
				MCCB 10-20 kA	21349.3
				MCCB > 20 kA	20821.6
XFD-25-SEC	0.208	20219.3	22987.4	LVPCB	20219.3
				Fuse X/R = 1.73	23160.8
				Fuse X/R = 4.9	20219.3
				MCCB 10-20 kA	20219.3
				MCCB > 20 kA	20219.3
XFD-35 SEC	0.208	19413.4	21296.1	LVPCB	19413.4
				Fuse X/R = 1.73	21214.8
				Fuse X/R = 4.9	19413.4
				MCCB 10-20 kA	19413.4
				MCCB > 20 kA	19413.4
XFD-36A SEC	0.208	19648.1	21938.2		19648.1
	0.200	200.0.1	22000.2	Fuse X/R = 1.73	21997.7
				Fuse X/R = 4.9	19648.1
				MCCB 10-20 kA	19648.1
				MCCB > 20 kA	19648.1
	0.000	10704.2	22005.0		
XFD-36A SEC_A	0.208	19721.3	22085.9		19721.3
				Fuse X/R = 1.73	22166
				Fuse X/R = 4.9	19721.
				MCCB 10-20 kA	19721.
				MCCB > 20 kA	19721.

3 PHASE Fau	ılt	Total Fault	Currents	Equipment Duties		
Bus Name	Bus kV	Sym Amps	Asym Amps	Equip Type	Duty Amps	
XFD-42A SEC	0.208	20313.7	23168.6	LVPCB	20313.7	
				Fuse X/R = 1.73	23359.4	
				Fuse X/R = 4.9	20313.7	
				MCCB 10-20 kA	20313.7	
				MCCB > 20 kA	20313.7	
XFD-42A SEC_A	0.208	20261.4	23057.4	LVPCB	20261.4	
				Fuse X/R = 1.73	23236.2	
				Fuse X/R = 4.9	20261.4	
				MCCB 10-20 kA	20261.4	
				MCCB > 20 kA	20261.4	
XFD-44-SEC	0.208	20628.7	24050	LVPCB	20628.7	
				Fuse X/R = 1.73	24336.3	
				Fuse X/R = 4.9	20628.7	
				MCCB 10-20 kA	20879.6	
				MCCB > 20 kA	20628.7	
XFD-45-SEC	0.208	20818.1	24515.9	LVPCB	20818.1	
				Fuse X/R = 1.73	24835.3	
				Fuse X/R = 4.9	20818.1	
				MCCB 10-20 kA	21307.7	
				MCCB > 20 kA	20818.1	
XFE-B SEC	0.208	34452.8	45447.3	LVPCB	34452.8	
				Fuse X/R = 1.73	45912.2	
				Fuse X/R = 4.9	35817.8	
				MCCB 10-20 kA	39390.9	
				MCCB > 20 kA	35817.8	
XFE-C SEC	0.208	0	0	LVPCB	0	
				Fuse X/R = 1.73	0	
				Fuse X/R = 4.9	0	
				MCCB 10-20 kA	0	
				MCCB > 20 kA	0	
XFF-D-SEC	0.48	15436.8	21302.7	LVPCB	15801.5	
				Fuse X/R = 1.73	21391.8	
				Fuse X/R = 4.9	16688.5	
				MCCB 10-20 kA	18353.3	
				MCCB > 20 kA	16688.5	

## HV Interrupting Report

Vpu = 1.00

3 PHASE Fau	ılt		Total Fault Currents								
Bus Name	Bus kV	Sym Amps	X/R Ratio	NACD	Breaker Type	Int Time Cyc	Part Time Cyc	Adj Fact	Bkr Duty Amps	Bkr Duty MVA	
A-31	4.16	3361.5	1.71	0	Sym	5	3	1	3361.5	24	
B18	4.16	4145.6	2.6	0	Sym	5	3	1	4145.6	30	
BUS-1	4.16	4981.5	23.33	0	Sym	5	3	1	4981.5	36	
BUS-2	4.16	4919.8	17.13	0	Sym	5	3	1	4919.8	35	
BUS-3	4.16	4944	19.11	0	Sym	5	3	1	4944	36	
BUS-4	4.16	4938.7	18.64	0	Sym	5	3	1	4938.7	36	
BUS-5	4.16	4933.5	18.19	0	Sym	5	3	1	4933.5	36	
BUS-6	4.16	4928.2	17.77	0	Sym	5	3	1	4928.2	36	
BUS-7	4.16	0	0	0	Sym	5	3	1	0	0	
BUS-8	4.16	4888.5	15.12	0	Sym	5	3	1	4888.5	35	
BUS-9_C	4.16	4947.5	20.21	0	Sym	5	3	1	4947.5	36	
BUS-9_G	4.16	0	0	0	Sym	5	3	1.25	0	0	
BUS-15	4.16	1930.5	1.57	0.039	Sym	5	3	1	1930.5	14	
BUS-27	4.16	3231.2	1.76	0	Sym	5	3	1	3231.2	23	
CORE FREEZER PRI	4.16	4484.8	5.98	0	Sym	5	3	1	4484.8	32	
D-17	4.16	3554.2	2.05	0	Sym	5	3	1	3554.2	26	
D-17-1	4.16	3537.5	2.04	0	Sym	5	3	1	3537.5	25	
D-17-1_A	4.16	3009.9	1.69	0	Sym	5	3	1	3009.9	22	
D-29	4.16	3107.3	1.68	0	Sym	5	3	1	3107.3	22	
D-30	4.16	2981.9	1.61	0	Sym	5	3	1	2981.9	21	
D-31	4.16	2915.6	1.57	0	Sym	5	3	1	2915.6	21	
D-33	4.16	2877.5	1.55	0	Sym	5	3	1	2877.5	21	
D-34	4.16	2826.2	1.53	0	Sym	5	3	1	2826.2	20	
D-35	4.16	2782.5	1.51	0	Sym	5	3	1	2782.5	20	
D-38	4.16	4360.2	4.67	0	Sym	5	3	1	4360.2	31	
D-41	4.16	4015.5	2.83	0	Sym	5	3	1	4015.5	29	
D-42	4.16	3959.6	2.69	0	Sym	5	3	1	3959.6	29	
D-43	4.16	3901.6	2.55	0	Sym	5	3	1	3901.6	28	
D-44	4.16	3845.7	2.44	0	Sym	5	3	1	3845.7	28	
D10	4.16	4035.4	2.97	0	Sym	5	3	1	4035.4	29	
D11	4.16	3958.9	2.75	0	Sym	5	3	1	3958.9	29	
D12	4.16	3882.2	2.57	0	Sym	5	3	1	3882.2	28	
D13	4.16	3794.2	2.4	0	Sym	5	3	1	3794.2	27	
D14	4.16	3716.8	2.27	0	Sym	5	3	1	3716.8	27	
D15	4.16	3653.3	2.18	0	Sym	5	3	1	3653.3	26	
D16	4.16	3602.9	2.11	0	Sym	5	3	1	3602.9	26	
					1						

3 PHASE Fault	:				Total Fault Cu	rrents				
Bus Name	Bus kV	Sym Amps	X/R Ratio	NACD	Breaker Type	Int Time Cyc	Part Time Cyc	Adj Fact	Bkr Duty Amps	Bkr Duty MVA
D17-2	4.16	3502.3	2	0	Sym	5	3	1	3502.3	25
D17-2_A	4.16	2997.3	1.68	0	Sym	5	3	1	2997.3	22
D18	4.16	3791.5	2.39	0	Sym	5	3	1	3791.5	27
D19	4.16	3695.6	2.24	0	Sym	5	3	1	3695.6	27
D20	4.16	3610.7	2.12	0	Sym	5	3	1	3610.7	26
D21	4.16	3532.3	2.03	0	Sym	5	3	1	3532.3	25
D22	4.16	3452.8	1.95	0	Sym	5	3	1	3452.8	25
D23	4.16	3380.5	1.88	0	Sym	5	3	1	3380.5	24
D24	4.16	3312.8	1.82	0	Sym	5	3	1	3312.8	24
D26	4.16	3292.3	1.81	0	Sym	5	3	1	3292.3	24
D28	4.16	3138.2	1.7	0	Sym	5	3	1	3138.2	23
GEN 1	4.16	1538.8	24.62	0	Sym	5	3	1	1538.8	11
GEN 2	4.16	1538.8	24.62	0	Sym	5	3	1	1538.8	11
GEN 5	4.16	4968.5	22.15	0	Sym	5	3	1	4968.5	36
GEN 6	4.16	4968.5	22.15	0	Sym	5	3	1	4968.5	36
GEN-4	4.16	4973.6	22.63	0	Sym	5	3	1	4973.6	36
GEN-155	4.16	1387.8	150	0	Sym	5	3	1.25	1741.1	13
JB	4.16	4359.3	5.67	0	Sym	5	3	1	4359.3	31
JB-1A	4.16	4922.9	17.36	0	Sym	5	3	1	4922.9	35
JB-3	4.16	3375.7	1.86	0	Sym	5	3	1	3375.7	24
JB-3A	4.16	4912	16.58	0	Sym	5	3	1	4912	35
JB-4	4.16	3338.8	1.83	0	Sym	5	3	1	3338.8	24
JB-5	4.16	2213.8	1.61	0	Sym	5	3	1	2213.8	16
JB-6B	4.16	4961.8	20.89	0	Sym	5	3	1	4961.8	36
JB-36D	4.16	3220.6	1.76	0	Sym	5	3	1	3220.6	23
JB-A1	4.16	0	0	0	Sym	5	3	1	0	0
JB-A2	4.16	4061.2	2.45	0	Sym	5	3	1	4061.2	29
JB-C1	4.16	4669.8	9.49	0	Sym	5	3	1	4669.8	34
JB-E1	4.16	4545.8	6.83	0	Sym	5	3	1	4545.8	33
JB-TSPG	4.16	4890.2	15.22	0	Sym	5	3	1	4890.2	35
JB-WP	4.16	4953	19.97	0	Sym	5	3	1	4953	36
KIWI	4.16	1808.7	1.29	0.113	Sym	5	3	1	1808.7	13
P-A1	4.16	0	0	0	Sym	5	3	1.25	0	0
P-A2	4.16	4936	18.4	0	Sym	5	3	1	4936	36
P-A3	4.16	4844.6	9.29	0	Sym	5	3	1	4844.6	35
P-A4	4.16	4801.8	7.58	0	Sym	5	3	1	4801.8	35

3 PHASE Fault		Total Fault Currents									
Bus Name	Bus kV	Sym Amps	X/R Ratio	NACD	Breaker Type	Int Time Cyc	Part Time Cyc	Adj Fact	Bkr Duty Amps	Bkr Duty MVA	
P-A5	4.16	4705.6	5.51	0	Sym	5	3	1	4705.6	34	
P-A6	4.16	4559.3	4.06	0	Sym	5	3	1	4559.3	33	
P-A7	4.16	4488.1	3.64	0	Sym	5	3	1	4488.1	32	
P-A8	4.16	4383.5	3.19	0	Sym	5	3	1	4383.5	32	
P-A9	4.16	4331.6	3.13	0	Sym	5	3	1	4331.6	31	
P-A9_A	4.16	4273.5	3.06	0	Sym	5	3	1	4273.5	31	
P-A10	4.16	4327.1	3	0	Sym	5	3	1	4327.1	31	
P-A10 COMMON D	4.16	4456.5	6.02	0	Sym	5	3	1	4456.5	32	
P-A18	4.16	4237.1	2.75	0	Sym	5	3	1	4237.1	31	
P-A19	4.16	4135.4	2.53	0	Sym	5	3	1	4135.4	30	
P-A20	4.16	4106.1	2.48	0	Sym	5	3	1	4106.1	30	
P-A21	4.16	3980.5	2.27	0	Sym	5	3	1	3980.5	29	
P-A22	4.16	3980.5	2.27	0	Sym	5	3	1	3980.5	29	
P-A22 - D COMMON	4.16	4272.7	3.94	0	Sym	5	3	1	4272.7	31	
P-A22.	4.16	4274.6	3.95	0	Sym	5	3	1	4274.6	31	
P-A23	4.16	3881.5	2.14	0	Sym	5	3	1	3881.5	28	
P-A24	4.16	3752.6	2	0	Sym	5	3	1	3752.6	27	
P-A25	4.16	3652.2	1.91	0	Sym	5	3	1	3652.2	26	
P-A26	4.16	3663.7	1.93	0	Sym	5	3	1	3663.7	26	
P-A28	4.16	3586.2	1.87	0	Sym	5	3	1	3586.2	26	
P-A29	4.16	3530.9	1.82	0	Sym	5	3	1	3530.9	25	
P-A30	4.16	3430.3	1.75	0	Sym	5	3	1	3430.3	25	
P-A32	4.16	3277.9	1.66	0	Sym	5	3	1	3277.9	24	
P-A33	4.16	3264.2	1.65	0	Sym	5	3	1	3264.2	24	
P-B	4.16	4905.4	16.14	0	Sym	5	3	1	4905.4	35	
P-B2	4.16	4890	15.08	0	Sym	5	3	1	4890	35	
P-B3	4.16	4816.8	8.92	0	Sym	5	3	1	4816.8	35	
P-B3.	4.16	0	0	0	Sym	5	3	1	0	0	
P-B4	4.16	4741.5	6.64	0	Sym	5	3	1	4741.5	34	
P-85	4.16	4666.6	5.32	0	Sym	5	3	1	4666.6	34	
P-B6	4.16	4606.5	4.64	0	Sym	5	3	1	4606.5	33	
P-88	4.16	4527.9	4.01	0	Sym	5	3	1	4527.9	33	
P-B9	4.16	4449.2	3.56	0	Sym	5	3	1	4449.2	32	
P-B10	4.16	4378.5	3.26	0	Sym	5	3	1	4378.5	32	
P-B11	4.16	4314.2	3.14	0	Sym	5	3	1	4314.2	31	
P-B12	4.16	4294.8	3.07	0	Sym	5	3	1	4294.8	31	

3 PHASE Fau	ılt	Total Fault Currents									
Bus Name	Bus kV	Sym Amps	X/R Ratio	NACD	Breaker Type	Int Time Cyc	Part Time Cyc	Adj Fact	Bkr Duty Amps	Bkr Duty MVA	
P-B13	4.16	4234.3	2.89	0	Sym	5	3	1	4234.3	31	
P-B14	4.16	4163	2.7	0	Sym	5	3	1	4163	30	
P-B15	4.16	4087.9	2.54	0	Sym	5	3	1	4087.9	29	
P-B16	4.16	4328.1	3.08	0	Sym	5	3	1	4328.1	31	
P-B17	4.16	4237.1	2.81	0	Sym	5	3	1	4237.1	31	
P-B20	4.16	4233.5	2.88	0	Sym	5	3	1	4233.5	31	
P-C1	4.16	4924.2	17.46	0	Sym	5	3	1	4924.2	35	
P-C2	4.16	0	0	0	Sym	5	3	1	0	C	
P-C3	4.16	0	0	0	Sym	5	3	1	0	C	
P-C4	4.16	0	0	0	Sym	5	3	1	0	C	
P-C5	4.16	0	0	0	Sym	5	3	1	0	C	
P-C6	4.16	0	0	0	Sym	5	3	1	0	C	
P-C7	4.16	0	0	0	Sym	5	3	1	0	C	
P-C8	4.16	0	0	0	Sym	5	3	1	0	C	
P-C9	4.16	0	0	0	Sym	5	3	1	0	C	
P-D2	4.16	0	0	0	Sym	5	3	1.25	0	(	
P-D4	4.16	0	0	0	Sym	5	3	1	0	C	
P-D5	4.16	0	0	0	Sym	5	3	1	0	(	
P-D6	4.16	0	0	0	Sym	5	3	1	0	(	
P-D7	4.16	0	0	0	Sym	5	3	1	0	(	
P-D8	4.16	0	0	0	Sym	5	3	1	0	C	
P-D9	4.16	4098.7	3.2	0	Sym	5	3	1	4098.7	30	
P-D33	4.16	4216.5	3.77	0	Sym	5	3	1	4216.5	30	
P-D36	4.16	3225.9	1.76	0	Sym	5	3	1	3225.9	23	
P-D37NC	4.16	4158.1	3.46	0	Sym	5	3	1	4158.1	30	
P-D39	4.16	4184.1	3.44	0	Sym	5	3	1	4184.1	30	
P-D40	4.16	4073.3	3.01	0	Sym	5	3	1	4073.3	29	
POWER PLANT A	4.16	4981.5	23.33	0	Sym	5	3	1	4981.5	36	
POWER PLANT A_A	4.16	4963.4	21.08	0	Sym	5	3	1	4963.4	36	
PUMP HOUSE PRI	4.16	4814	9.16	0	Sym	5	3	1	4814	35	
RWE POWERSTORE	4.16	3196.7	1.75	0	Sym	5	3	1	3196.7	23	
SW-1	4.16	4949.3	19.61	0	Sym	5	3	1	4949.3	36	
SW-2	4.16	4962.4	20.96	0	Sym	5	3	1	4962.4	36	
SW-3	4.16	4949.3	19.61	0	Sym	5	3	1	4949.3	36	
SW-4	4.16	4933	18.15	0	Sym	5	3	1	4933	36	
SW-5	4.16	4976.5	22.65	0	Sym	5	3	1	4976.5	36	

3 PHASE Fault		Total Fault Currents									
Bus Name	Bus kV	Sym Amps	X/R Ratio	NACD	Breaker Type	Int Time Cyc	Part Time Cyc	Adj Fact	Bkr Duty Amps	Bkr Duty MVA	
SW-6	4.16	4976.5	22.65	0	Sym	5	3	1	4976.5	36	
SWA-01	4.16	4115.4	2.52	0	Sym	5	3	1	4115.4	30	
SWC-01	4.16	4915.5	16.81	0	Sym	5	3	1	4915.5	35	
SWE-01	4.16	4539.6	6.76	0	Sym	5	3	1	4539.6	33	
T-L (XFE-A)	4.16	4974.7	22.43	0	Sym	5	3	1	4974.7	36	
T-PH-1	4.16	4947.1	19.4	0	Sym	5	3	1	4947.1	36	
TIE SWITCH AC	4.16	0	0	0	Sym	5	3	1.25	0	0	
TW-1 PRI	4.16	4944.2	19.12	0	Sym	5	3	1	4944.2	36	
TW-2 PRI	4.16	4944.2	19.12	0	Sym	5	3	1	4944.2	36	
TW-2 PRI_A	4.16	4947.1	19.4	0	Sym	5	3	1	4947.1	36	
XFA-4 PRI	4.16	4743.4	6.44	0	Sym	5	3	1	4743.4	34	
XFA-5-PRI	4.16	4633	4.82	0	Sym	5	3	1	4633	33	
XFA-6-PRI	4.16	4472	3.65	0	Sym	5	3	1	4472	32	
XFA-6-PRI_A	4.16	0	0	0	Sym	5	3	1	0	0	
XFA-9A-PRI	4.16	4313.6	3.08	0	Sym	5	3	1	4313.6	31	
XFA-9B-PRI	4.16	4255.8	3.02	0	Sym	5	3	1	4255.8	31	
XFA-10A PRI	4.16	0	0	0	Sym	5	3	1	0	0	
XFA-10B-PRI	4.16	4051.5	2.44	0	Sym	5	3	1	4051.5	29	
XFA-19-PRI	4.16	4117.3	2.5	0	Sym	5	3	1	4117.3	30	
XFA-25-PRI	4.16	3636	1.9	0	Sym	5	3	1	3636	26	
XFA-25A-PRI	4.16	3636	1.9	0	Sym	5	3	1	3636	26	
XFA-32-PRI	4.16	3264	1.65	0	Sym	5	3	1	3264	24	
XFA-B3B4 PRI	4.16	0	0	0	Sym	5	3	1	0	0	
XFA-HT PRI	4.16	0	0	0	Sym	5	3	1	0	0	
XFA-VEOC PRI	4.16	3883.1	2.24	0	Sym	5	3	1	3883.1	28	
XFB-3-PRI	4.16	4803.8	8.41	0	Sym	5	3	1	4803.8	35	
XFB-11-PRI	4.16	4296.3	3.09	0	Sym	5	3	1	4296.3	31	
XFB-12-PRI	4.16	4277	3.03	0	Sym	5	3	1	4277	31	
XFB-15-PRI	4.16	4070.3	2.51	0	Sym	5	3	1	4070.3	29	
XFB-15A-PRI	4.16	4070.3	2.51	0	Sym	5	3	1	4070.3	29	
XFB-17-PRI	4.16	4129.3	2.61	0	Sym	5	3	1	4129.3	30	
XFB-20-PRI	4.16	4215.7	2.84	0	Sym	5	3	1	4215.7	30	
XFC-8 -XFC-8 PRI	4.16	0	0	0	Sym	5	3	1	0	0	
XFC-8A PRI	4.16	4284.3	5.19	0	Sym	5	3	1	4284.3	31	
XFC-8C PRI	4.16	3994.5	3.95	0	Sym	5	3	1	3994.5	29	
XFC-B2B5 PRI	4.16	4514.1	4.92	0	Sym	5	3	1	4514.1	33	

3 PHASE Fault		Total Fault Currents								
Bus Name	Bus kV	Sym Amps	X/R Ratio	NACD	Breaker Type	Int Time Cyc	Part Time Cyc	Adj Fact	Bkr Duty Amps	Bkr Duty MVA
XFD-6-PRI	4.16	0	0	0	Sym	5	3	1	0	0
XFD-17 PRI	4.16	3539.5	2.04	0	Sym	5	3	1	3539.5	26
XFD-17 PRI_B	4.16	3775.9	2.37	0	Sym	5	3	1	3775.9	27
XFD-17-1 PRI	4.16	3464.8	1.97	0	Sym	5	3	1	3464.8	25
XFD-17-1 PRI_A	4.16	2952.2	1.66	0	Sym	5	3	1	2952.2	21
XFD-18 PRI	4.16	3775.9	2.37	0	Sym	5	3	1	3775.9	27
XFD-25 PRI	4.16	3299.2	1.81	0	Sym	5	3	1	3299.2	24
XFD-35 PRI	4.16	2771.9	1.51	0	Sym	5	3	1	2771.9	20
XFD-36-D1	4.16	2153.4	1.6	0	Sym	5	3	1	2153.4	16
XFD-36-D2	4.16	2003.1	1.58	0	Sym	5	3	1	2003.1	14
XFD-42-B PRI	4.16	3325	1.82	0	Sym	5	3	1	3325	24
XFD-42A-PRI	4.16	3361.7	1.85	0	Sym	5	3	1	3361.7	24
XFD-44	4.16	3620.6	2.16	0	Sym	5	3	1	3620.6	26
XFD-45-PRI	4.16	3769.2	2.33	0	Sym	5	3	1	3769.2	27
XFE-A PRI	4.16	4400.5	4.87	0	Sym	5	3	1	4400.5	32
XFE-B PRI	4.16	4539.6	6.76	0	Sym	5	3	1	4539.6	33
XFE-C	4.16	0	0	0	Sym	5	3	1.25	0	0
XFF-D-PRI	4.16	4947.1	19.4	0	Sym	5	3	1	4947.1	36

## 30 Cycle Report

Vpu = 1.00

3 PHASE Fa	Total Fault Currents			
Name	Bus kV	Sym Amps		
A-31	4.16	2597.5		
A20-1	0.208	1698.3		
A22	0.208	4087.4		
A22-2	0.208	2887.3		
A22-3	0.208	1993.3		
A23	0.208	2661.3		
B-3	0.48	12353.3		
B-3 AND B-4	0.48	0		
B-5	0.48	12353.3		
B-15-SEC	0.208	14351.6		
B-15-SEC_A	0.208	5539.3		
B-15-SEC_B	0.208	5539.3		
B-155	0.208	18335.9		
B-167	0.208	464.5		
B-182 COM	0.208	3048.6		
B-188	0.208	464.5		
B-221	0.208	6801.5		
B4-LOUNGE	0.208	1195.1		
B4-THEATER	0.208	1195.1		
B7	0.208	2248.6		
B10	0.208	3244.7		
B18	4.16	2968		
B68	0.208	16157.7		
B72	0.208	1666.6		
B73	0.208	10226.5		
B75	0.208	0		
B129	0.208	0		
B132	0.208	2467.4		
B136A	0.208	6533.1		
B136C	0.208	6533.1		
B141	0.208	1881.7		
B150	0.208	9390.8		
B159	0.208	0		
B160	0.208	10226.5		
B166	0.208	563.6		
B168	0.208	1575.8		
B174	0.208	5607		
B175	0.208	4087.4		
B182 VEH HTRS 1	0.208	4182.6		
B182 VEH HTRS 2	0.208	4768.8		
B185	0.208	5607		
B191	0.208	17000.9		
B192	0.208	2910.1		
B341	0.208	16157.7		
B344	0.208	805.6		

3 PHASE F	ault	Total Fault Currents
Name	Bus kV	Sym Amps
BLDG 10	0.48	10743.7
BUILDING 4	0.208	13094.6
BUS-1	4.16	3323.6
BUS-2	4.16	3296.1
BUS-3	4.16	3306.9
BUS-4	4.16	3304.5
BUS-5	4.16	3302.2
BUS-6	4.16	3299.8
BUS-7	4.16	0
BUS-8	4.16	3282.1
BUS-9	0.208	273.1
BUS-9_C	4.16	3308.4
BUS-9_G	4.16	0
BUS-10	0.208	0
BUS-15	4.16	1664.6
BUS-27	4.16	2514.1
CORE FREEZER PRI	4.16	3100.2
CORE FREEZER SEC	0.48	10798.9
D-17	4.16	
		2677.5
D-17-1	4.16	2669.4
D-17-1_A	4.16	2386.5
D-29	4.16	2447.9
D-30	4.16	2379
D-31	4.16	2341.6
D-33	4.16	2319.8
D-34	4.16	2290.2
D-35	4.16	2264.6
D-38	4.16	3044.9
D-40 SEC	0.208	1519.2
D-41	4.16	2894.2
D-42	4.16	2869.1
D-43	4.16	2842.9
D-44	4.16	
D10	4.16	2901.1
D11	4.16	2866.9
D12	4.16	2832.1
D13	4.16	2791.6
D14	4.16	2755.4
D15	4.16	2725.3
D16	4.16	2701.1
D17-2	4.16	2652.1
D17-2_A	4.16	2379.1
D18	4.16	2790.3
D19	4.16	2745.4
D20	4.16	2704.9
D21	4.16	2666.8
D22	4.16	2627.5
D23	4.16	2591.2
D24	4.16	2556.5

3 PHASE F	ault	Total Fault Currents
Name	Bus kV	Sym Amps
D26	4.16	2546
D28	4.16	2464.7
D39 SEC	0.208	2910.1
D40 SEC	0.208	2254.8
GEN 1	4.16	1025.9
GEN 2	4.16	1025.9
GEN 5	4.16	3317.8
GEN 6	4.16	3317.8
GEN-4	4.16	3320
GEN-155	4.16	925.2
HT-165	0.48	0
HTA	0.48	4451.5
HTA A	0.48	4451.5
HTA_B	0.48	4451.5
HTP#1	0.48	0
HTP#2	0.48	0
HTP-5	0.48	4451.5
HTP3	0.48	4451.5
HTP4	0.48	4451.5
НТРБ	0.48	4451.5
JB	4.16	3040.6
JB-1A	4.16	3297.5
JB-3	4.16	2590.5
JB-3A	4.16	3292.6
JB-5A	4.16	2571.1
JB-4	4.16	1866.3
JB-6B	4.16	3314.8
JB-36D	4.16	2508.3
JB-A1	4.16	0
JB-A2	4.16	2930.4
JB-C1	4.16	3183.3
JB-E1	4.16	3127.6
JB-TSPG	4.16	3282.9
JB-WP	4.16	3310.9
KIWI	4.16	1602.8
LDB HE COMPRESS	0.208	12707.3
LOAD BANKS	0.48	13131
P-35 SEC	0.208	15539.5
P-A1	4.16	0
P-A2	4.16	3303.3
P-A3	4.16	3263.7
P-A4	4.16	3245.6
P-A5	4.16	3205.5
P-A6	4.16	3144.8
P-A7	4.16	3115.2
P-A8	4.16	3071.5
P-A9	4.16	3047.2
P-A9_A	4.16	3019.7
P-A10	4.16	3047.6

3 PHASE F	ault	Total Fault Currents
Name	Bus kV	Sym Amps
P-A10 COMMON D	4.16	3086.6
P-A18	4.16	3009.3
P-A19	4.16	2965.2
P-A20	4.16	2952.4
P-A20-1	0.208	9410.6
P-A21	4.16	2896.6
P-A22	4.16	2896.6
P-A22 - D COMMON	4.16	3007.1
P-A22.	4.16	3007.9
P-A23	4.16	2851.6
P-A24	4.16	2791.6
P-A25	4.16	2743.7
P-A26	4.16	2748
P-A26 LITE SOUTH	0.208	1738
P-A26 SEC	0.208	2693.6
P-A27	0.208	1607
P-A28	4.16	2710.4
P-A29	4.16	2683.1
P-A30	4.16	2632.7
P-A30-SEC	0.208	3467.8
P-A31 (SEC)	0.208	5185.8
P-A31 (SEC) P-A31 SEC WEST	0.208	3467.8
P-A31 SEC WEST	4.16	2553.9
P-A32	4.16	2555.5
P-855	4.16	3289.7
P-B1	0.208	
	4.16	3629.9
P-B2		3282.8
P-B3	4.16	3251.3
P-B3-SEC	0.208	3775.7
P-B3.	4.16	0
P-84	4.16	3219.3
P-85	4.16	3188
P-B5-SEC	0.208	1644.6
P-86	4.16	3163
P-88	4.16	3130.3
P-89	4.16	3097.5
P-B10	4.16	3067.8
P-B11	4.16	3038.3
P-B12	4.16	3030.1
P-813	4.16	3004.2
P-B14	4.16	2973.4
P-815	4.16	2940.5
P-B16	4.16	3046.5
P-B17	4.16	3007.6
P-B20	4.16	3004
P-882	0.208	2146.5
P-B82_A	0.208	1454.8
P-C1	4.16	3298
P-C2	4.16	0

3 PHASE I	Total Fault Currents				
Name	Bus kV	Sym Amps			
P-C3	4.16	0			
P-C4	4.16	0			
P-C4 SEC	0.208	0			
P-C4-1	0.208	0			
P-C5	4.16	0			
P-C5 SEC	0.208	0			
P-C6	4.16	0			
P-C6 SEC	0.208	0			
P-C6-1	0.208	0			
P-C6-2	0.208	0			
P-C7	4.16	0			
P-C7 SEC	0.208	0			
P-C8	4.16	0			
P-C8 SEC	0.208	0			
P-C9	4.16	0			
P-D2	4.16	0			
P-D2	4.16	0			
P-D5	4.16	0			
P-D6	4.16	0			
P-D7	4.16	0			
		0			
P-D8	4.16	_			
P-D9	4.16	2929.2			
P-D33	4.16	2980.8			
P-D36	4.16	2511.3			
P-D37NC	4.16	2955.3			
P-D39	4.16	2968.6			
P-D40	4.16	2919.9			
POLE-B166	0.208	630.8			
POLE 167	0.208	509.3			
POWER PLANT A	4.16	3323.6			
POWER PLANT A_A	4.16	3315.5			
PUMP HOUSE PRI	4.16	3249.9			
PUMP HOUSE-SEC	0.48	2480.6			
RWE POWERSTORE	4.16	2494.7			
SCOTT BASE G1	0.4	80			
SCOTT BASE G2	0.4	80			
SW-1	4.16	3309.2			
SW-2	4.16	3315.1			
SW-3	4.16	3309.2			
SW-4	4.16	3302			
SW-5	4.16	3321.3			
SW-6	4.16	3321.3			
SWA-01	4.16	2955.4			
SWC-01	4.16	3294.2			
SWE-01	4.16	3124.8			
T-L (XFE-A)	4.16	3320.5			
T-PH-1	4.16	3308.3			
T-PH-1 SEC	0.48	13106.9			
T-W-1 SEC	0.208	30240.8			

3 PHASE	Fault	Total Fault Currents
Name	Bus kV	Sym Amps
T-W-2 SEC	0.48	13104.4
T-W-2 SEC A	0.208	30246.8
TIE SWITCH AC	4.16	0
TW-1 PRI	4.16	3307
TW-2 PRI	4.16	3307
TW-2 PRI_A	4.16	3308.3
USAP B70	0.208	6727.8
VEHICLE HTRS	0.208	0
VEOC	0.48	8101.3
WTG-SOURCE-1	0.4	80
WTG-SOURCE-2	0.4	80
WTG-SOURCE-3	0.4	80
WTG-1	0.4	80
WTG-1_A	0.4	80
WTG-1_B	0.4	80
WTG-1_C	0.4	80
WTG-2	0.4	80
XFA-4 PRI	4.16	3220.6
XFA-4 SEC	0.48	4543
XFA-5-PRI	4.16	3174.5
XFA-5-SEC	0.208	19704.7
XFA-6-PRI	4.16	3107.4
XFA-6-PRI_A	4.16	0
XFA-6-SEC	0.208	19566.4
XFA-6-SEC_A	0.208	0
XFA-9-A-SEC	0.208	19430.8
XFA-9-B-SEC	0.208	19375.2
XFA-9A-PRI	4.16	3039.3
XFA-9B-PRI	4.16	3011.9
XFA-10A PRI	4.16	0
XFA-10A-SEC	0.208	0
XFA-10B-PRI	4.16	2925.6
XFA-10B-SEC	0.208	19210.8
XFA-19-PRI	4.16	2957
XFA-19-SEC	0.208	19274.4
XFA-25-A-SEC	0.208	18852.4
XFA-25-PRI	4.16	2735.7
XFA-25-SEC	0.208	18852.4
XFA-25A-PRI	4.16	2735.7
XFA-32-PRI	4.16	2546.4
XFA-32-SEC	0.208	7165.7
XFA-B3B4 PRI	4.16	0
XFA-B3B4 SEC.	0.48	0
XFA-HT PRI	4.16	0
XFA-HT-SEC	0.48	0
XFA-VEOC PRI	4.16	2846.8
XFB-3-PRI	4.16	3245.7
XFB-3-SEC	0.208	3932.3
XFB-11 SEC	0.208	19412.7
A10-113EC	0.208	15412.7

3 PHASE F	ault	Total Fault Currents
Name	Bus kV	Sym Amps
XFB-11-PRI	4.16	3030.5
XFB-12 SEC	0.208	10599.1
XFB-12-PRI	4.16	3022.2
XFB-15 SEC	0.208	19221.8
XFB-15-PRI	4.16	2932.4
XFB-15A SEC	0.48	4567.8
XFB-15A-PRI	4.16	2932.4
XFB-17 SEC	0.208	19274.9
XFB-17-PRI	4.16	2959.3
XFB-20 SEC	0.208	19345.3
XFB-20-PRI	4.16	2996.1
XFC-8-XFC-8 PRI	4.16	0
XFC-8-SEC	0.208	0
XFC-8A PRI	4.16	3005.5
XFC-8A SEC	0.48	0
XFC-8B SEC	0.48	19369.1
XFC-86 SEC	4.16	2866.7
XFC-8C PRI	0.208	19063.3
XFC-B2B5 PRI	4.16	3117.8
XFC-B2B5-SEC	4.16	
		12726.9
XFD-5-SEC	0.208	0
XFD-6-PRI	4.16	_
XFD-17 PRI	4.16	2670.1
XFD-17 PRI_B	4.16	2782.9
XFD-17 SEC	0.208	18671.8
XFD-17-1 PRI	4.16	2632.5
XFD-17-1 PRI_A	4.16	2353.7
XFD-17-1 SEC	0.208	18592.4
XFD-18 PRI	4.16	2782.9
XFD-18-SEC	0.208	18900.3
XFD-19 SEC	0.208	18900.3
XFD-25 PRI	4.16	2549.3
XFD-25-SEC	0.208	18422.8
XFD-35 PRI	4.16	2258.3
XFD-35 SEC	0.208	17779.2
XFD-36-D1	4.16	1824.1
XFD-36-D2	4.16	1717.1
XFD-36A SEC	0.208	17960.2
XFD-36A SEC_A	0.208	18019
XFD-42-B PRI	4.16	2563.8
XFD-42A SEC	0.208	18499
XFD-42A SEC_A	0.208	18457.1
XFD-42A-PRI	4.16	2583.2
XFD-44	4.16	2708.4
XFD-44-SEC	0.208	18746.9
XFD-45-PRI	4.16	2780.8
XFD-45-SEC	0.208	18898.2
XFE-A PRI	4.16	3063.5
XFE-B PRI	4.16	3124.8

3 PHASE	Fault	Total Fault Currents
Name	Bus kV	Sym Amps
XFE-B SEC	0.208	29412.3
XFE-C	4.16	
XFE-C SEC	0.208	
XFF-D-PRI	4.16	3308.
XFF-D-SEC	0.48	13106.

Equipment Duty Report EasyPower 9.8.1.490 07/19/17 19:05:40 C:\...\McM Primary Distribution.dez EasyPower LLC. Comments :

Fault Type: 3 PHASE Vpu: 1.00

Bus		Equipment				Ratings			Duties				Comments
Name	Base kV	ID	Manufacturer	Style	Test Standard	1/2 Cycle (kA)	Int (kA)	Int Cycles	1/2 Cycle (kA)	1/2 Cycle Percent	Int (kA)	Int Percent	
BUS-1	4.160	BH-2_I	SQD	VR-05035-12	ANSI-SYM	78.000	46.914	3	7.932	-89.8%	5.070	-89.2%	
POWER PLANT A	4.160	H-2 A H-2 B H-2 C H-2 C H-2 D H-2 L H-2 E H-2 F H-2 F H-2 F H-2 C H-2 H H-2 H H-2 I	SQD SQD SQD SQD SQD SQD SQD SQD SQD SQD	R-05035-12 R-05035-12 R-05035-12 R-05035-12 R-05035-12 R-05035-12 R-05035-12 R-05035-12 R-05035-12 R-05035-12	ANSI-SYM ANSI-SYM ANSI-SYM ANSI-SYM ANSI-SYM ANSI-SYM ANSI-SYM ANSI-SYM ANSI-SYM	78.000 78.000 78.000 78.000 78.000 78.000 78.000 78.000 78.000 78.000	46.914 46.914 46.914 46.914 46.914 46.914 46.914 46.914 46.914	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4.891 5.487 5.487 7.933 7.933 7.933 7.933 7.933 7.933 7.933 7.932	-93.7% -93.0% -93.0% -89.8% -89.8% -89.8% -89.8% -89.8% -89.8% -89.8%	3.126 3.507 3.507 5.070 5.070 5.070 5.070 5.070 5.070 5.070 5.070	-93.3% -92.5% -89.2% -89.2% -89.2% -89.2% -89.2% -89.2% -89.2%	
POWER PLANT A_A	4.160	BH2_M BH2_O BH2_P BH2_Q BH2_R BH2_R BH2_T	SQD SQD SQD SQD SQD SQD	VR-05005-12 VR-05005-12 VR-05005-12 VR-05005-12 VR-05005-12 VR-05005-12	ANSI-SYM ANSI-SYM ANSI-SYM ANSI-SYM ANSI-SYM ANSI-SYM	78.000 78.000 78.000 78.000 78.000 78.000 78.000	46.914 46.914 46.914 46.914 46.914 46.914 46.914	3 3 3 3 3 3 3 3 3	6.629 6.258 6.629 7.032 6.318 6.318	-91.5% -92.0% -91.5% -91.0% -91.9% -91.9%	4.199 3.964 4.199 4.454 4.001 4.001	-91.1% -91.6% -91.1% -90.5% -91.5% -91.5%	
SW-1	4.160	FS-1	Cutler-Hammer	0LE	ANSI-SYM	50.000			5.089	-89.8%			
SW-2	4.160	FS-1_A	Cutler-Hammer	α.E	ANSI-SYM	50.000			5.133	-89.7%			
SW-3	4.160	FS-1_B	Cutler-Hammer	Q.E	ANSI-SYM	50.000			5.089	-89.8%			
SW-4	4.160	FS-1_C	Cutler-Hammer	Q.E	ANSI-SYM	50.000			5.034	-89.9%			
SW-5	4.160	FS-1_D	Cutler-Hammer	0LE	ANSI-SYM	50.000			5.182	-89.6%			
SW-6		FS-1_E FS-2	Cutler-Hammer Cutler-Hammer	a.e a.e	ANSI-SYM ANSI-SYM	50.000 50.000			5.182 5.182	-89.6% -89.6%			
SWA-01	4.160	FS-1_F	Cutler-Hammer	0LE	ANSI-SYM	50.000			4.115	-91.8%			
SWE-01	4.160	FS-42 FS-43	Cutler-Hammer Cutler-Hammer	a.e	ANSI-SYM ANSI-SYM	50.000 50.000			4.540 4.540	-90.9% -90.9%			
XFA-4 PRI	4.160	FS-15_B	Cooper	NK	ANSI-SYM	50.000			4.743	-90.5%			
XFA-5-PRI	4.160	FS-15 C	Cooper	NK	ANSI-SYM	50.000			4.633	-90.7%			